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Abstract

Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI)
technique that estimates magnetic susceptibility of tissue from MR phase measurements.
Recently, several supervised deep learning (DL) techniques have demonstrated impressive
performance in solving the challenging ill-posed field-to-source inverse QSM reconstruction
problem. To address the lack of the inherent non-existent ground-truth QSM references,
a model-based method was recently proposed using the well-established physical model.
However, it fails to perform well at the regions with large susceptibility variations. Here, we
proposed uQSM+ with data augmentation techniques to improve the model-based learning.
The proposed method was evaluated on a multi-orientation QSM datasets and 2019 QSM
reconstruction challenge datasets. Quantitative and qualitative evaluation showed that
uQSM+ and zero-shot uQSM+ was capable of reconstructing high quality QSM. The code
is available at https://github.com/juana313/uQSM-plus.
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1. Introduction

Quantitative susceptibility mapping (QSM) can estimate tissue magnetic susceptibility val-
ues from magnetic resonance imaging (MRI) Larmor frequency sensitive phase images
(Wang and Liu, 2015). Biological tissue magnetism can provide useful diagnostic image
contrast and be used to quantify biomarkers including iron, calcium, and gadolinium (Wang
and Liu, 2015). To date, all QSM methods rely on a dipolar convolution that relates sus-
ceptibility sources to induced Larmor frequency offsets (Salomir et al., 2003; Marques and
Bowtell, 2005), which is expressed in the k-space as bellow.

B(k) = X(k) ·D(k);D(k) =
1

3
− k2z
k2x + k2y + k2z

(1)

where B(k) is the susceptibility induced magnetic perturbation along the main magnetic
field direction z, X(k) is the susceptibility distribution χ in the k space, D(k) is the dipole
kernel. While the source-to-field forward relationship of this model is well-established and
can be efficiently computed using Fast-Fourier-Transform (FFT), the k-space singularity in
the dipole kernel results in an ill-conditioned relationship in the field-to-source inversion.

Calculation of susceptibility through multiple orientation sampling (COSMOS) (Liu
et al., 2009) remains the empirical gold-standard of QSM, as the additional field data suf-
ficiently improves the conditioning of the inversion algorithm. Since it is time-consuming
and clinically infeasible to acquire multi-orientation data, single-orientation QSM is pre-
ferred which is computed by either thresholding of the convolution operator (Shmueli et al.,

© 2021 J. Liu.

https://github.com/juana313/uQSM-plus


Improved Model-based Learning for QSM

2009; Wharton et al., 2010; Haacke et al., 2010) or use of more sophisticated regularization
methods (De Rochefort et al., 2008; de Rochefort et al., 2010; Liu et al., 2011; Bilgic et al.,
2014). In single-orientation QSM, inaccurate field-to-source inversion often causes large
susceptibility quantification errors that appear as streaking artifacts, especially in massive
hemorrhagic regions.

Recently, several deep learning (DL) approaches have been proposed to solve for the
QSM dipole inversion, such as QSMnet (Yoon et al., 2018), DeepQSM (Bollmann et al.,
2019), FINE (Zhang et al., 2019), QSMGAN (Chen et al., 2019), QSMnet+ (Jung et al.,
2020), and xQSM (Gao et al., 2021). These DL techniques have exhibited impressive re-
sults and demonstrated the superiority of DL to address the challenging QSM reconstruction
problem. These methods are supervised and data-driven which require QSM labels for net-
work training. Unfortunately, QSM has the inherent non-existent ‘ground-truth’. Therefore,
these methods use either COSMOS data or synthetic data for network training. However,
acquiring a large number of COSMOS data is not only expensive but also time consuming.
Moreover, COSMOS does not ensure the model consistency and contains errors from image
registration procedures. Though synthetic data provides a reliable and cost-effective way for
training, the generalization capability needs to be addressed when applying on real data. To
overcome these limitations, Liu et al.(Liu and Koch, 2020) proposed a model-based learning
method, denoted as uQSM, without the need of QSM labels for network training.

Though the model-based learning method showed promising, uQSM fails to perform
well at the regions with large susceptibility variations. To address this issue, we propose a
data augmentation technique to regularize the model-based training. The method, denoted
as uQSM+, uses random pseudo high susceptibility sources induced field perturbation to
superimpose on the original local field, to improve the robustness of model-based learning.
We conduct extensive experiments on a multi-orientation datasets and 2019 QSM recon-
struction challenge. The results show that uQSM+ and ‘zero-shot’ uQSM+ (zs-uQSM+)
consistently leads to significant improvements.

2. Method

Due to that the field-to-source inversion is constrained by the physical model in Eq.1, the
conventional data augmentation techniques such as random rotation, shearing, and color
change etc is not applicable. Here we proposed a novel way to bring implicit regularization to
increase the robustness of the unsupervised training. Assuming that the network is trained
to perform well to derive the susceptibility map χ from the local field f , it should generalize
well to derive the susceptibility map χ+χb from the perturbed local field f + d ∗χb, where
d is the dipole kernel, ∗ is the convolution operator, χb is perturbed susceptibility map,
fb = d ∗ χb is the induced perturbed field. Based on that uQSM performs poor at regions
with large susceptibility variations, we intentionally generate the perturbed field using high
susceptibility sources to mimic the bleeding (with large positive susceptibility values) and
calcification (with large negative susceptibility values).

Fig.1 shows the network architecture of uQSM+. uQSM+ adopts a 3D U-Net like
architecture (Ronneberger et al., 2015). Different from QSMnet and DeepQSM, uQSM+
applies only one convolutional layers at each level of encoding/decoding scales, to make
the network smaller to be able to accept larger patch size (more contextual information)
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during network training. In addition, the batch normalization layers are discarded here,
since the batch size in training is small, which could influence the effectiveness of batch
normalization. We found that uQSM+ without batch normalization layers can be trained
faster at the same time without sacrificing the performance.

Figure 1: Neural network architecture of uQSM+.

During network training, the network takes the local field measurement f and the brain
mask m, and at the same time the augmented local field measurement fa = f + d ∗ χb and
the brain mask m, to to infer χ and χa respectively. The data relationship between χ and
χa is used as a regularization term in the loss function.

The loss function incorporates the data fidelity loss Lχ. From uQSM, the fidelity loss
using nonlinear dipole inversion performs better than the fidelity loss using linear dipole
inversion and weighted linear dipole inversion. Therefore, here we also use the nonlinear
dipole inversion in the loss function.

Lχ =
∥∥∥Wm(ejd∗χ − ejf )

∥∥∥
2

(2)

where W serves as a data-weighting factor which can be the magnitude image or noise
weight matrix.

LTV = ‖Gx(χ)‖1 + ‖Gy(χ)‖1 + ‖Gz(χ)‖1 (3)

In addition, a total variation (TV) loss LTV on the output χ is to preserve important
details such as edges whilst removing unwanted noise in the reconstructed susceptibility
maps. In LTV , Gx, Gy, Gz are gradient operators in x, y, z directions.

For χ and χa, the susceptibility difference inside the pseudo bleeding/calcification regions
should be the susceptibility values of pseudo bleedings/calcification, and the susceptibility
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difference outside of the pseudo bleeding regions should be zeros so that no artifacts appears.
Therefore, two data consistency losses are defined,

Lconsist i ROI = ‖mROI((χa − χ)− χb))‖2 (4)

Lconsist x ROI = ‖mXROI(χa − χ)‖2 (5)

where mROI is the regions of pseudo bleeding and calcifications, mXROI is the regions
outside of bleeding and calcifications.

LTotal = Lχ + λ1LTV + λ2(t)Lconsist i ROI + λ3(t)Lconsist x ROI (6)

The loss function is the weighted sum of the above four loss terms. λ2(t) and λ3(t) are
changed in ramp-up (i.e., a gradually increasing weight) then ramp-down (i.e., a gradually
decreasing weight) strategy. At the beginning of network training, the network starts to
learn for dipole inversion, therefore λ2(t) and λ3(t) are set low. Then λ2(t) and λ3(t)
gradually increase to impose larger regularization. At the last few epochs, λ2(t) and λ3(t)
gradually decrease so that the network learns to better meet the physical model. At the
network prediction stage, the trained model only takes f and mask m to infer χ.

Further, we investigate “zero-shot” uQSM+ (zs-uQSM+) to perform single data
QSM reconstruction, which does not rely on training data for prior training.

3. Experiments

Multi-orientation Datasets 9 QSM datasets were acquired using 5 head orientations
and a 3D single-echo GRE scan with isotropic voxel size 1.0x1.0x1.0 mm3 on 3T MRI
scanners. QSM data processing was implemented as following, offline GRAPPA (Griswold
et al., 2002) reconstruction to get magnitude and phase images from saved k-space data, coil
combination using sensitivities estimated with ESPIRiT (Uecker et al., 2014), BET (FSL,
FMRIB, Oxford, UK) (Smith, 2002) for brain extraction, Laplacian method (Li et al., 2011)
for phase unwrapping, and RESHARP (Wu et al., 2012) with spherical mean radius 4mm
for background field removal. COSMOS results were calculated using the 5 head orientation
data which were registered by FLIRT (FSL, FMRIB, Oxford, UK) (Jenkinson et al., 2002;
Jenkinson and Smith, 2001).

For uQSM+ training, leave-one-out cross validation was used. For each dataset, total
40 scans (8*5) from other 8 datasets were used for training. uQSM+ was trained on patch-
based with patch size 96x96x96. The RESHARP local field and brain mask patches with
patch size 96x96x96 were randomly cropped during training. The magnitude images were
used as the weighting factor W . 100 perturbed susceptibility maps with random ellipsoid
shapes (transverse, equatorial and polar radii 1-5mm), random rotation in three axes (0-
360◦), random susceptibility value (N(u = ±1.5ppm, σ = 0.1ppm)), random location were
generated. Adam optimizer (Kingma and Ba, 2014) was used for the model training. The
initial learning rate was set as 0.0002, with exponentially decay at every 200 steps. The
network was trained with 15 epochs, 200 steps for each epoch, batch size 2. The model was
trained and evaluated using Tensorflow 2.2. For zs-uQSM+ implementation, we also used
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96x96x96 patch-based with random cropped patches from the single dataset itself, with
total 750 iterations.

In addition, QSM estimates were generated using the TKD (Shmueli et al., 2009), MEDI
(Liu et al., 2012), deep image prior (DIP), and uQSM. The results of TKD, MEDI, uQSM,
uQSM+, zs-uQSM+ were compared with respect to the COSMOS maps using quantitative
metrics, peak signal-to-noise ratio (PSNR), normalized root mean squared error (NRMSE),
high frequency error norm (HFEN), and structure similarity (SSIM) index.

2019 QSM Reconstruction Challenge On the 2019 QSM reconstruction challenge
stage 2 (http://qsm.snu.ac.kr/?pageid=30), four datasets with two contrast levels and
two noise levels (denoted by Sim1Snr1, Sim1Snr2, Sim2Snr1, and Sim2Snr2, with “Sim”
representing contrast level and “Snr” standing for noise level) were generated using MR
simulation(Marques et al., 2021; Bilgic et al., 2020). The metrics for evaluation in the chal-
lenge are NRMSE, dNRMSE (detrended NRMSE), dNRMSE Tissue, dNRMSE DeepGM,
NRMSE Blood, DLS (Deviation From Linear Slope), Calcification Streak, and Deviation
From Calcification Moment (Calcification Error).

Since each dataset has different contrast level and noise level, zs-uQSM+ was used to
get the QSM result of each dataset. At first stage, the image patches with patch size
96x96x96 were randomly cropped during training. 100 perturbed susceptibility maps with
fake bleedings (N(u = 2.0ppm, σ = 0.1ppm)) and calcifications (N(u = −2.0ppm, σ =
0.1ppm)) and their induced local field were generated. The noise weight matrix was scaled
to [0, 1] and used as W in the loss function. After 2000 iterations, the full field map with
image size 160x160x160 was inputted to network for further fine-tuning with another 2000
iterations using the loss LTotal = Lχ + λ1LTV . For dataset with different noise levels, λ1
was set as 0.004 and 0.002 for noise levels Snr1 and Snr2, respectively.

4. Experimental Results

Multi-orientation Datasets Table.1 summarized quantitative metrics on 9 multi-orientation
datasets. Compared to TKD, MEDI, and uQSM, uQSM+ results achieved the best metric
scores in PSNR, RMSE, and HFEN, and second best in SSIM.

Table 1: Means and standard deviations of quantitative performance metrics of 9 recon-
structed QSM images with COSMOS as a reference on 9 multi-orientation datasets.

PSNR (dB) NRMSE (%) HFEN (%) SSIM (0-1)
TKD 43.4± 0.5 91.4± 6.7 72.9± 6.6 0.831± 0.016
MEDI 41.5± 0.6 113.8± 7.6 100.4± 9.1 0.902±0.016
DIP 44.0± 0.8 85.5± 6.7 65.7± 4.5 0.859± 0.020
uQSM 45.6±0.4 71.4±5.0 62.8±5.0 0.890± 0.015
uQSM+ 46.1±0.5 67.2±3.9 59.6±3.4 0.892± 0.012
zs-uQSM+ 46.0±0.5 67.5±3.8 60.4±4.5 0.887± 0.012

Fig.2 compared QSM images from a representative dataset. Streaking artifacts were
observed in TKD, MEDI, and DIP results (a-c, iii, black solid arrows). uQSM showed
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shadow artifacts around the large vessels (d, iii, black arrow). Compared with uQSM,
uQSM+ and zs-uQSM+ results displayed better image quality and suppressed shadows.

Figure 2: Comparison of QSM of a multi-orientation data. TKD (a), MEDI (b), and DIP
(c) maps showed oversmoothing and/or streaking artifacts. The uQSM (d) maps
well preserve image details but show black shading artifacts. uQSM+ (e) and
zs-uQSM+ (f) achieved impressive quality and suppressed shadows.

2019 QSM reconstruction challenge Table.2 showed the quantitative metrics scores
of zs-uQSM+ on 2019 QSM reconstruction challenge stage 2. When compared with all
17 submitted DL-based methods on SNR1 (Appendix Table.4 and Table.5), zs-uQSM+
achieved the second best in NRMSE, dNRMSE tissue, dNRMSE blood, dNRMSE DGM,
CalcStreak, CalcificationError, fourth best in DLS. On SNR2, zs-uQSM+ achieved the
second best in NRMSE, dNRMSE tissue, dNRMSE blood, dNRMSE DGM, CalcStreak,
CalcificationError, and DLS.

Table 2: Quantitative metrics of zs-uQSM+ on 2019 QSM challenge datasets.

NRMSE dNRMSE dNRMSE Tissue dNRMSE Blood
SNR1 40.349 42.723 47.586 67.143
SNR2 38.364 40.058 44.861 62.501

dNRMSE DGM DLS CalcStreak CalcificationError
SNR1 26.256 0.0656 0.0267 7.993
SNR2 24.606 0.0532 0.0285 10.981

Fig.3 displayed the QSM results of QSM challenge 2019 datasets stage2 Sim2Snr2.
Streaking artifacts were clearly visible in submitted TKD, DeepQSM, xGAN, CAD QSM-
net results. MEDI and FINE achieved impressive quality and high scores of quantitative
metrics. The proposed zs-uQSM+ displayed high quality and invisible artifacts, but showed
enlarged calcification regions when compared with the ground truth.
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Figure 3: QSM results on 2019 QSM reconstruction challenge stage2 Sim2Snr2. Streaking
artifacts show up around the calcification region in the submitted results of TKD,
QSMnet, DeepQSM, xQSM, indicated by black arrows.

Figure 4: Illustration of the effects of the data augmentation on 2019 QSM reconstruction
challenge stage2 Sim2Snr2 dataset.
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Fig.4 showed that the results with and without data augmentation on Sim2Snr2. With-
out the proposed data augmentation, the result showed invisible image artifacts while en-
larged calcification regions (ii). From the line profile, zs-uQSM+ better estimated the
susceptibility values at calcification region (yellow) than that without data augmentation
(red), but still failed to accurately estimate the susceptibility values.

5. Discussion

In this work, an improved model-based learning for QSM was proposed which utilize the
local field perturbation to introduce regularization in the unsupervised learning. From
quantitative evaluation and visual assessment on multi-orientation QSM datasets and 2019
QSM reconstruction challenge datasets, uQSM+ and zs-uQSM+ achieved impressive per-
formance. On 2019 QSM reconstruction challenge, uQSM+ outperformed many supervised
learning methods. We think that many submitted supervised DL-based methods neglected
the problem of domain shift induced performance drop. The reason that FINE achieved
impressive performance might be that it was trained with the data itself MEDI result, in
which the well-tuned MEDI result performed pretty well and using the data itself MEDI
result for training does not have the domain shift problem.

Compared with uQSM, uQSM+ utilizes local field perturbation to better regularize
the unsupervised learning for dipole inversion. The local field perturbation explicitly im-
poses regularization and improve the robustness and generalization of network. Compare
with other proposed supervised DL methods such as QSMnet, DeepQSM, QSMGAN, etc,
uQSM+ and zs-uQSM+ were trained in an unsupervised way without the need of QSM
labels. The unsupervised learning has the advantage of easy preparing training data.

Although the proposed uQSM+ improved the model-based learning for QSM, there are
still exist some limitations. First, uQSM+ is still affected by the processing steps ahead
QSM inversion, such as field estimation, phase unwrapping, and background field removal
methods. It is necessary to investigate these effects on susceptibility quantification. Second,
at regions with extreme large susceptibility variation such as 2019 QSM reconstruction
challenging datasets, uQSM+ has the difficulty to accurately quantify the susceptibility
values at the calcification region. The possible reason is that the network has difficulty to
learn the high frequency components of a signal due to spectral bias. Further study will
investigate and address this problem. Third, the patch-based network training cannot fully
guarantee the data fidelity.

6. Conclusion

In conclusion, we proposed an improved model-based learning for QSM which use the per-
turbation of the local field to bring regularization and improve the robustness of solving the
ill-posed field-to-source inverse problem. The proposed method can give promising results
in terms of artifacts and image quality. We believe that uQSM+ and zs-uQSM+ could serve
a good baseline for DL-based QSM techniques in the future.
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Appendix A. Multi-orientation datasets

Figure 5: Residual error maps of Fig.2 with COSMOS as a reference. From the coronal and
sagittal planes, uQSM+ and zs-uQSM+ have less streaking residuals.
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Figure 6: Comparison of QSM of a multi-orientation data. Compared with TKD, MEDI,
DIP, and uQSM, uQSM+ (e) and zs-uQSM+ (f) greatly suppressed the shadow
artifacts and achieved impressive image quality.

Figure 7: Residual error maps of Fig.6 with COSMOS as a reference.
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Figure 8: Comparison of QSM of a multi-orientation data. Compared with TKD, MEDI,
DIP, and uQSM, uQSM+ (e) and zs-uQSM+ (f) greatly suppressed the shadow
artifacts and achieved impressive image quality.

Figure 9: Residual error maps of Fig.8 with COSMOS as a reference.

Appendix B. Comparison of other data augmentation

Two data augmentation techniques are compared with the proposed data augmentation
technique.

(1) applying random flipping in x, y directions, assuming the main magnetic field along
the z direction.

(2) adding Gaussian noise in the local field input. Let fn = f + n, where fn is the local
field with adding Gaussian noise, f is the calculated local field without adding Gaussian
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noise, n is the the added Gaussian noise. The loss function is weighted sum of Lχ =∥∥Wm(ejd∗χ − ejf )
∥∥
2

and LTV .

Table 3: Means and standard deviations of quantitative performance metrics of 9 recon-
structed QSM images with COSMOS as a reference on 9 multi-orientation datasets.

PSNR (dB) NRMSE (%) HFEN (%) SSIM (0-1)
uQSM 45.6±0.4 71.4±5.0 62.8±5.0 0.890± 0.015
uQSM w flipping 45.8± 0.7 69.8± 6.4 62.5± 6.7 0.890± 0.013
uQSM w noise 45.6±0.7 71.3±7.8 63.7±7.0 0.892± 0.016
uQSM+ 46.1±0.5 67.2±3.9 59.6±3.4 0.892±0.012

Figure 10: Comparison of three data augmentation methods. In (b) and (c), uQSM with
flipping and adding noise reconstruct QSM with artifacts (black arrows). The
proposed method (d) better suppressed the shadow artifacts.

Table.3 showed that the proposed data augmentation achieved the best quantitative
metric scores among two other data augmentation techiniques. Fig.10 showed that data
augmentation using flipping and adding Gaussian noise cannot effectively improve the QSM
result. The proposed method is much more effective for suppressing artifacts.
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Appendix C. Comparison of different geometric shapes of perturbed
sources

In the paper, we used ellipsoid shape to generate the perturbed susceptibility sources. To
know whether the geometric shapes could effects the performance of uQSM+, we compared
four geometric shapes - (1) cuboid, (2) sphere, (3) cylinder and (4) ellipsoid. The multi-
orientation datasets were used for comparison. For PSNR, there is no significant difference
(ellipsoid vs cuboid p = 0.27, ellipsoid vs cylinder p = 0.31, ellipsoid vs sphere p = 0.22).
For NRMSE, there is no significant difference (ellipsoid vs cuboid p = 0.40, ellipsoid vs
cylinder p = 0.46, ellipsoid vs sphere p = 0.36). For HFEN, there is no significant difference
(ellipsoid vs cuboid p = 0.39, ellipsoid vs cylinder p = 0.47, ellipsoid vs sphere p = 0.31).
For SSIM, there is no significant difference (ellipsoid vs cuboid p = 0.41, ellipsoid vs cylinder
p = 0.44, ellipsoid vs sphere p = 0.97). In addition, based on visual assessment, there is no
difference among them.

Figure 11: Comparison of different geometric shapes of perturbed sources. Based on visual
assessment, uQSM+ using these four geometric shapes of perturbed sources
reconstruct comparable QSM.
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Appendix D. zs-QSM+ on 2019 QSM reconstruction challenge stage 2

Figure 12: zs-uQSM+ results on 2019 QSM reconstruction challenge stage2.

Appendix E. Effects of weighting factor on 2019 QSM Challenge data
stage2

The 2019 QSM reconstruction challenge datasets were generated using 4 echo time MR
simulation. Here we compared the QSM reconstruction results when choosing the different
weighting factor used in Lχ =

∥∥Wm(ejd∗χ − ejf )
∥∥
2
. (1) 1st echo magnitude image, (2) 2nd

echo magnitude image, (3) 3rd echo magnitude image, (4) 4th echo magnitude image, (5)
noise weighting matrix which was obtained when doing nonlinear field map fitting from the
multi-echo magnitude and phase images using MEDI toolbox.
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Figure 13: Illustration of magnitude images and noise weighting image of Sim1SNR1 and
Sim2SNR2, with scaling to [0, 1]. The Sim1SNR1 has higher noise level than
Sim2SNR2. The image contrast of magnitude images increases from 1st echo
to 4th echo. The noise weighting images also similar image contrast with 3rd
echo magnitude image, with higher noise level at calcification region, vessels,
and globus pallidus, which show darker in the image.
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Figure 14: Illustration of QSM of Sim1SNR1 and Sim2SNR2 using different weighting factor
in zs-QSM+. Based on visual assessment, zs-QSM+ using different weighting
factor generates comparable QSM.
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Appendix F. Deep learning methods on 2019 QSM Reconstruction
Challenge stage 2

Table 4: Quantitative metrics of submitted deep learning methods on 2019 QSM challenge
stage2 SNR1.

Identifier NRMSE dNRMSE dNRMSE Tissue dNRMSE Blood
9uErOsxGtr 60.95 76.45 95.40 148.64
BZA1ZHG0K7 61.78 78.87 100.53 152.92
cbi99GQHhl 94.23 108.60 147.31 163.90
FTAaNyeZiW 58.28 71.78 90.37 132.41
Jg4olcpuFP 50.29 55.97 66.46 94.16
Mx2TDToh2i 86.65 113.15 142.27 181.01
NF3tlGX8ED 61.57 77.64 90.96 127.33
nxEaOyG7or 63.18 82.01 107.65 153.84
OGggRA8FeM 91.16 118.42 153.38 197.20
rjEHqZ7N2X 61.76 77.11 105.18 113.48
SvA010zZI6 60.41 75.21 95.66 148.06
u1qUWqXjWY 86.87 102.86 132.05 156.48
urVBXFAeow 96.40 153.26 251.58 187.97
VvuzvIauS6 64.41 83.81 107.77 161.47
waXOIrgZog 68.30 92.23 118.39 170.72
BnhV1weeRf 30.41 31.85 37.32 50.53
YTQ7SppYwF 66.97 86.04 106.78 163.44

Identifier dNRMSE DGM DLS CalcStreak CalcificationError
9uErOsxGtr 43.27 0.0469 0.1130 40.17
BZA1ZHG0K7 38.90 0.0179 0.1624 40.17
cbi99GQHhl 47.19 0.0749 0.2113 27.68
FTAaNyeZiW 32.93 0.1595 0.0935 36.47
Jg4olcpuFP 33.37 0.0814 0.1148 40.12
Mx2TDToh2i 59.07 0.1021 0.1133 36.97
NF3tlGX8ED 77.04 0.3458 0.1036 44.07
nxEaOyG7or 39.42 0.0630 0.1044 45.52
OGggRA8FeM 70.96 0.3302 0.1344 45.81
rjEHqZ7N2X 33.61 0.1294 0.0803 37.62
SvA010zZI6 41.63 0.1561 0.1314 40.35
u1qUWqXjWY 54.12 0.0653 0.1089 26.52
urVBXFAeow 65.58 0.2580 0.1268 43.07
VvuzvIauS6 45.48 0.1215 0.1061 45.97
waXOIrgZog 46.61 0.0316 0.1673 45.73
BnhV1weeRf 19.86 0.0212 0.0147 4.47
YTQ7SppYwF 44.20 0.1679 0.0667 48.81
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Table 5: Quantitative metrics of submitted deep learning methods on 2019 QSM challenge
stage2 SNR2.

Identifier NRMSE dNRMSE dNRMSE Tissue dNRMSE Blood
9uErOsxGtr 63.25 78.21 99.43 151.20
BZA1ZHG0K7 63.15 80.40 105.18 155.03
cbi99GQHhl 105.57 91.72 106.31 153.59
FTAaNyeZiW 57.17. 69.70 86.71 127.77
Jg4olcpuFP 46.08 50.51 58.95 87.42
Mx2TDToh2i 73.07 92.63 113.48 157.31
NF3tlGX8ED 61.17 77.02 90.34 126.05
nxEaOyG7or 64.64 83.49 116.58 152.22
OGggRA8FeM 80.92 106.69 141.50 180.90
rjEHqZ7N2X 61.15 76.00 102.58 112.51
SvA010zZI6 61.72 77.18 101.79 149.42
u1qUWqXjWY 70.07 82.47 104.01 133.06
urVBXFAeow 85.84 132.16 204.96 165.55
VvuzvIauS6 65.70 86.35 116.70 159.30
waXOIrgZog 68.51 93.14 121.98 167.87
BnhV1weeRf 28.260 29.37 33.84 47.86
YTQ7SppYwF 64.74 81.72 100.77 155.60

Identifier dNRMSE DGM DLS CalcStreak CalcificationError
9uErOsxGtr 41.54 0.0289 0.0959 39.39
BZA1ZHG0K7 38.70 0.0368 0.1345 41.84
cbi99GQHhl 45.25 0.0340 0.2212 26.04
FTAaNyeZiW 32.71 0.1573 0.1084 23.38
Jg4olcpuFP 31.36 0.0761 0.1141 39.87
Mx2TDToh2i 51.11 0.1010 0.1244 33.83
NF3tlGX8ED 77.37 0.3510 0.1049 43.84
nxEaOyG7or 37.90 0.0822 0.0931 44.15
OGggRA8FeM 63.72 0.2918 0.1288 44.60
rjEHqZ7N2X 33.42 0.1282 0.0806 37.66
SvA010zZI6 40.14 0.1682 0.1229 40.89
u1qUWqXjWY 44.21 0.0917 0.1050 22.58
urVBXFAeow 65.66 0.2867 0.1374 39.37
VvuzvIauS6 44.21 0.1091 0.0982 45.23
waXOIrgZog 45.38 0.0721 0.1561 44.59
BnhV1weeRf 19.20 0.0246 0.0152 4.36
YTQ7SppYwF 41.67 0.1576 0.1064 28.42
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