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Abstract

Accurate segmentation of volumetric scans like MRI and CT scans is highly demanded for
surgery planning in clinical practice, quantitative analysis, and identification of disease.
However, accurate segmentation is challenging because of the irregular shape of given or-
gan and large variation in appearances across the slices. In such problems, 3D features are
desired in nature which can be extracted using 3D convolutional neural network (CNN).
However, 3D CNN is compute and memory intensive to implement due to large number of
parameters and can easily over fit, especially in medical imaging where training data is lim-
ited. In order to address these problems, we propose a distillation-based depth shift module
(Distill DSM). It is designed to enable 2D convolutions to make use of information from
neighbouring frames more efficiently. Specifically, in each layer of the network, Distill DSM
learns to extract information from a part of the channels and shares it with neighbouring
slices, thus facilitating information exchange among neighbouring slices. This approach
can be incorporated with any 2D CNN model to enable it to use information across the
slices with introducing very few extra learn-able parameters. We have evaluated our model
on BRATS 2020, heart, hippocampus, pancreas and prostate dataset. Our model achieves
better performance than 3D CNN for heart and prostate datasets and comparable perfor-
mance on BRATS 2020, pancreas and hippocampus dataset with simply 28% of parameters
compared to 3D CNN model.

Keywords: Deep learning, volumetric segmentation, parameter efficient 3D CNN, distil-
lation, channel shifting

1. Introduction

Medical imaging using Computed Tomography(CT) and Magnetic Resonance Imaging (MRI)
is frequently used in clinical practice for investigating a wide range of conditions, e.g., in-
jury prediction, disease diagnosis, surgery simulation, therapeutic planning, etc. It is often
required to segment the portion of interest in a given CT or MR to interpret or analyse the
clinical conditions.

Manual segmentation of medical images is tedious and labour intensive work and often
leads to high variation across reporters, which motivates the need to automate the segmen-
tation process. With the advances in deep learning methods, convolutional neural network
(CNN) are becoming increasingly popular in being applied to various medical image seg-
mentation tasks to increase consistency across multiple human experts.
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Medical images like CT and MRI are 3D in nature and widely used in clinical diagnosis.
In order to perform the segmentation of volumetric data, we can employ the following
possible strategies. The first is by considering the 3D volume as set of individual 2D
slices and training 2D CNN for segmenting the structures of interest in 2D slices. Another
approach is to enable the network operations to process volumetric data by using 3D CNN
and train the 3D CNN for volumetric segmentation. Using 2D CNNs for segmentation
results in a computationally light model with faster inference time. However, it does not
take into account the information from adjacent slices, resulting in a model with lowered
segmentation accuracy. On the other hand, 3D CNN is able to incorporate information from
adjacent slices for better quality of segmentation and has the same spatial field of view as
that in a 2D CNN, but it requires higher computation cost resulting in lowered throughput
and higher latency. On account of the large number of parameters, 3D CNNs are prone to
overfitting, especially with small dataset.

In order to bridge the performance gap between 2D CNN and 3D CNN, we propose
a simple and computationally efficient technique with computational complexity in the
order of 2D CNN, while being able to incorporate the interslice information for enhanced
quality. In this paper, we introduce a novel component termed Distill DSM, which is able
to effectively model information along the depth dimension, motivated by TSM1 (Lin et al.,
2019) originally for action recognition in videos. The proposed module can be inserted in
any 2D segmentation network to improve its performance with a negligible increase in the
number of parameters and order of computation. In each layer of the network where present,
Distill DSM learns to extract information that is useful for the current slice and information
that is useful for the immediate neighbours thereby mitigating the loss of information. Distill
DSM achieves performance comparable to state-of-the-art 3D CNN model on BRATS 20202,
pancreas3, hippocampus3 dataset and better results compared to 3D CNN on heart3 and
prostate3 dataset with just 28% parameters as compared to state of the art 3D CNN. Our
paper has the following contributions-:

• We propose a distillation-based depth shift module that enables to segment volu-
metric data using 2D convolution by extracting and sharing necessary information
to neighbouring slice along depth-dimension, reducing the model size to 28% of the
state-of-the-art 3D CNN.

• The proposed solution is a plug-and-play module which could be incorporated with
any 2D CNN architecture to model information along the Z direction.

• We did a comprehensive evaluation on five datasets to validate the proposed method.

2. Related Work

2.1. Segmentation

Earlier approaches to segment images use classical image processing techniques such as
thresholding, region-growing methods, etc. (Vincent and Soille, 1991). Recent approaches

1. Originally Temporal shift Module (TSM), but since here volumetric data is used, it will be referred as
Depth shift module (DSM) in further sections of paper

2. https://www.med.upenn.edu/cbica/brats2020/data.html
3. http://medicaldecathlon.com/
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make use of machine learning techniques. Segmentation of 2D medical images using deep
neural networks has an accuracy close to human performance today (Zhou et al., 2017;
Shen et al., 2017; Falk et al., 2019; Ronneberger et al., 2015; Nandamuri et al., 2019).
Initial approaches to segment 3D volumes used 2D CNNs to segment 2D slices individually
(Milletari et al., 2016a). This approach, although being computationally friendly, it does not
have good accuracy. More recently, fully convolutional architectures employ 3D convolutions
such as 3D U-Net (Özgün Çiçek et al., 2016) and V-Net (Milletari et al., 2016b), which result
in high performance but are computationally expensive.

2.2. Efficient Neural Network for learning 3D feature

Efficient neural network commonly uses 2D CNN along with some techniques to learn 3D
feature in computationally inexpensive manner. Approaches for learning 3D feature using
2D CNN is mostly classified in three streams: 1) 2D slice distillation (Chen et al., 2016;
Ettlinger et al., 2016; Cai et al., 2017; Novikov et al., 2019) 2) 2.5D (Prasoon et al., 2013;
Ambellan et al., 2019; Li et al., 2018; Xia et al., 2018; Yu et al., 2019) and 3) 2D multiple
views (Wang et al., 2019; Li et al., 2019). Methods adopting 2D slice distillation, distill
3D features from 2D features learned by 2D CNNs from 2D slices by employing recurrent
neural network (rnn, 2001; Lipton et al., 2015) or conditional random field (Quattoni et al.,
2005; Zheng et al., 2015). 2.5D based methods learns 3D features by giving several 2D slices
as input to a 2D CNN. 2D multiple view based methods extract information from multiple
views (usually: axial, coronal, and sagittal) and combine the information from multiple
views for predicting the output. Another method generally adopted for making efficient
CNN is to make use of binary kernel (Heinrich et al., 2018; Rastegari et al., 2016; Juefei-Xu
et al., 2017). This approach reduces the parameter drastically.

Depth Shift Module (Lin et al., 2019) shifts part of feature channels in each frame to
its neighbouring frame so that 2D convolution could handle depth information. Based on
this idea of integrating depth information to 2D convolution, we propose Distill DSM.

3. Methodology

3.1. Problem Formulation

In the segmentation task for 3D image data, let Xi and Yi represent input image volume and
the segmentation maps respectively, where Xi = {x1, x2, ..., xNi} and Yi = {y1, y2, ..., yNi},
where xj ⊆ RH×W is a 2D slice of medical image and yj is segmentation mask for the
corresponding 2D slice. Different X have different number of 2D slices i.e. different Ni.
Our objective is to find F such that objective function given below minimises.

J =
1

K

i=K∑
i=1

L(F (Xi), Yi) (1)

where K is total number of 3D volumes in the training dataset and L is the loss function,
which is computed using model output and ground truth.
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Figure 1: First row contains the intermediate convolutional features of the slices Zi, Zi+1,
Zi+2, Zi+3. Some parts of the channels are shifted to neighbouring slices to ex-
change information. The second row contains convolutional features after shifting
is done. The channel indicated by white color represents zero padding.

3.2. Intuition

3D CNN’s capture inter slice information by convolving a 3D kernel to 3D input, which
basically helps in gathering information from neighbouring slices to current slice. The
operation results in gathering the complete information, including both spatial and semantic
from the neighbouring slices. Using all the information from the neighbouring slices could be
redundant in many cases. This makes them highly computationally and memory expensive.

A more efficient and simple way to exchange information among the neighbouring slices
is to shift some channels of the current slice to neighbouring slices as shown in Figure 1
and proposed in (Lin et al., 2019). There have been various works (Bau et al., 2017, 2020)
which show different channels correspond to different semantics. However, hard shifting
of the channel will lead to loss of some information from the current slice including both
semantic and spatial information. In order to prevent loss of information, (Lin et al.,
2019) introduced residual DSM, where they add back the initial feature to channel shifted
feature. However, addition is not an effective way to merge information and result in loss
of some spatial and semantic information from current slice. This could lead to the drastic
decrease in the performance of model, especially for segmentation task. If we can retain
the necessary information (from the channels we are shifting) in the current slice and pass
the necessary information required by neighbouring frame, then it would result in a highly
efficient architecture having benefits of 3D architecture at a cost of 2D CNN. Motivated by
this, we propose a novel architecture Distill Depth Shift Module(DSM).

3.3. Distill DSM

The proposed Distill DSM is shown in Figure 2. We extract three components of information
from the part of feature channels which were shifted to neighbouring slices in DSM. Consider
a feature map of ith frame Zi ⊆ RC×h×w where C is the number of channels and h,w is
the spatial size. We select αC channels from the end of Zi where α ∈ [0, 1] and distill
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Figure 2: Above module represents Distill DSM, in which from a part of feature channels of
every slice, three kinds of information are extracted. Features to retain, features
to pass to forward slice, and features to pass to backward slice. Channels shown
with white color in the second row represent zero-padded channels.

the information stored into three components as follows: 1) Ri ⊆ Rα
C
2
×h×w: Necessary

information to retain in Zi 2) Fi ⊆ Rα
C
4
×h×w: Necessary information to pass to forward

slice Zi+1 3) Bi ⊆ Rα
C
4
×h×w: Necessary information to pass to backward slice Zi−1. In

order to calculate the distilled information(Ri,Fi,Bi) we use a convolution layer for each of
them. Now the retained information (Ri) from current slice, forward information(Fi+1) and
backward information(Bi−1) from the next and previous slice respectively are concatenated
to the channels of current slice Zi. These operations are done for each and every slice
in the volume. This completes the Distill DSM operation for the slices, after this each
and every slice has information from previous and the following slice along with its own
information. In the case of the first slice where there is no previous slice, the slice is zero
padded in channel dimension to maintain the shape and similar adjustment is done for the
last slice. The schematic for 4 slices is shown in Figure 2. Note, in the first Distill DSM
layer only immediate neighbouring slices would share the information but as we go deeper
in the network the slices which are far away would also be sharing the information0.

Using our approach for exchanging information helps in two ways. 1) Loss of information
from the current slice is minimal as we perform distillation with the help of convolution
to retain necessary information. 2) Information passed to forward and backward slice is
not hard shifted i.e. model itself decides, what information it should pass and to what
extent it should pass the information, as it can be the case in semantic segmentation that
in initial layer the information exchange is more among neighbouring slices as to capture
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T1 Label 2D UNet DSM 3D UNet Distill DSM

Figure 3: Results on BRATS 2020 dataset. First row, shows a case where 3D UNet fails
to predict correctly where as Distill DSM predicts correctly. Last row is the
boundary slice, where Distill DSM and 3D UNet are able to predict some of the
segmentation maps where as DSM and 2D UNet are not, proving most essential
thing that proposed model is able to model information along depth dimension

the spatial-temporal structures so that deeper layers could focus on semantics of current
slice and hence segmenting the required portion.

4. Experiments

4.1. Datasets

To compare with the baseline (Ronneberger et al., 2015; Özgün Çiçek et al., 2016; Lin
et al., 2019) we train and test our model on BRATS 2020 (Bakas et al., 2019) dataset
and on 4 representative datasets of Medical Decathlon challenge (Simpson et al., 2019).
The first dataset is Cardiac which includes 20 mono-modal MR volumes for segmentation
of left atrium. The second is Hippocampus which includes 263 mono-modal MR volumes
for segmentation of hippocampus head and body. The third is Prostate which includes
32 multi-modal MR volumes for segmentation of central gland and peripheral zone. The
fourth being Pancreas, which includes 282 CT volumes for segmentation of liver and tumour.
All the datasets from Medical decathlon were randomly splitted into 5 folds, by randomly
shuffling the sequence of volumes and splitting the dataset into 5 fixed folds. Brats 2020
dataset consists of 371 training volumes and 127 testing volumes. Training data is further
splitted into 4:1 ratio for training and validation and results are shown on testing dataset.

The Dice similarity coefficient and Hausdorff Distance 95 is used to evaluate proposed
model for medical decathlon dataset and Dice similarity coefficient, Hausdorff Distance 95
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Table 1: Quantitative segmentation results of 2D U-Net, 3D U-Net, Residual DSM and
Distill DSM on BRATS 2020 dataset. ET represents Enhancing Tumor, WT
represents Whole Tumor and TC represents Tumor Core

Class 2D U-Net Residual DSM 3D U-Net Distill DSM(Ours)

Parameters 1,082,211 1,082,211 4,288,208 1,216,266

Flops per voxel 38,662 38,735 58,709 39,456

Wall time per voxel(s) 7.9498e-7 8.1726e-7 8.6517e-7 8.2641e-7

Dice
ET 0.712 0.732 0.704 0.753
WT 0.861 0.867 0.879 0.873
TC 0.687 0.704 0.796 0.742

Sensitivity
ET 0.714 0.707 0.687 0.761
WT 0.859 0.835 0.898 0.841
TC 0.660 0.693 0.779 0.726

Specificity
ET 0.9997 0.99978 0.99975 0.99969
WT 0.99903 0.99939 0.99896 0.99944
TC 0.99975 0.99986 0.99958 0.9997

Hausdorff95
ET 35.20 29.21 43.27 30.52
WT 6.52 8.42 11.46 5.98
TC 27.39 34.85 18.84 32.87

Table 2: Ablation experiments for α hyper parameter
Metric α = 1

4 α = 1
2 α = 1

Parameter 1,115,606 1,216,266 1,619,330

Heart Dice 1 0.9125±0.008 0.9235±0.011 0.9203±0.009

Hippocampus
Dice 1 0.8888±0.006 0.8955±0.005 0.8958±0.003
Dice 2 0.8618±0.006 0.8786±0.008 0.8795±0.002

Prostate
Dice 1 0.8325±0.037 0.8724±0.014 0.8721±0.008
Dice 2 0.7565±0.065 0.7804±0.081 0.7818±0.076

(HSD), Sensitivity, and Specificity is used to evaluate proposed model on BRATS 2020
dataset.

4.2. Implementation details

Our experiments are implemented using PyTorch on NVIDIA Tesla V100 GPUs (16GB
memory) and are carried out on Ubuntu machine with 96GB RAM and 32 cores. All net-
works use dice per channel loss function and Adam optimizer. Proposed distill DSM is
integrated with U-Net (Ronneberger et al., 2015) architecture setting. After each convolu-
tional operator in 2D U-Net, a distill DSM layer is added so that 2D convolution processes
each slice individually and then pass it through Distill DSM to exchange information among
the 2D slices. We have used α = 1

2 for experiments.

4.3. Ablation study

In this section value of α is determined. With increase in value of α, the number of param-
eters increase and so is the information sent to forward and backward slice. Experiments
were conducted on Heart, Hippocampus and Prostate dataset of medical decathlon chal-
lenge for varying value of α and is summarised in Table 2. It can be observed that from
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Table 3: Quantitative segmentation results of 2D U-Net, 3D U-Net, Residual DSM and
Distill DSM on heart, hippocampus, prostate and pancreas segmentation dataset
from medical segmentation decathlon dataset

Dataset Metric 2D U-Net Residual DSM VFN 3D U-Net Distill DSM(Ours)

Heart
Dice 0.9025±0.004 0.9076±0.009 0.9085±0.010 0.918±0.009 0.9235±0.011
HD 3.4723±0.118 1.8953±0.147 1.4588±0.153 1.2523±0.145 1.0056±0.123

Hippocampus
Dice 1 0.8802±0.002 0.8901±0.007 0.8919±0.005 0.8993±0.004 0.8955±0.005
Dice 2 0.8618±0.011 0.8648±0.010 0.8663±0.009 0.8847±0.008 0.8786±0.008

HD 1.6825±0.082 1.4209±0.045 1.4826±0.089 1.2587±0.075 1.3325±0.13

Prostate
Dice 1 0.7847+0.041 0.7948±0.033 0.8068±0.052 0.8164±0.041 0.8724±0.014
Dice 2 0.6978±0.085 0.70214±0.07 0.7425±0.076 0.7339±0.066 0.7804±0.081

HD 8.0664±0.567 6.8528±0.532 5.6835±0.692 5.5961±0.217 4.6294±0.485

Pancreas
Dice 1 0.7395±0.024 0.7624±0.02 0.7650±0.018 0.7739±0.016 0.792±0.022
Dice 2 0.3485±0.036 0.3632±0.032 0.3684±0.031 0.4115±0.030 0.3765±0.035

HD 16.7597±3.88 14.4535±3.82 13.6824±3.26 12.5574±1.04 11.9875±3.436

α = 1
4 to α = 1

2 there is huge improvement in performance, however from α = 1
2 to α = 1

there isn’t much improvement, but the parameters increased drastically. Hence, α = 1
2 is

used for all the experiments as it results in parameter efficient and highly accurate model.

4.4. Comparison of results

In the comparison experiments, we compare proposed distill DSM with 2D segmentation
method like U-Net (Ronneberger et al., 2015), 3D segmentation method like 3D U-Net
(Özgün Çiçek et al., 2016) and computationally efficient method like residual DSM (Lin
et al., 2019) and VFN (Xia et al., 2018). Table 1 summarises results on BRATS 2020 dataset
(Bakas et al., 2019). Table 1 also have contains number of parameter, flops per voxel and
wall time per voxel i.e. inference time per voxel. It can be observed that with very nominal
parameter around 28% of 3D U-Net architecture we are able to achieve comparable results
and our method outperform both residual DSM and 2D U-Net. Figure 3 visualises output
of segmentation map from different methods.

Table 3 summarises results on various dataset of Medical Decathlon challenge (Simpson
et al., 2019). Our method outperform 3D U-Net in case of heart and prostate dataset where
we have limited number of 3D volume available for training. It is because of reason that 3D
CNN are prone to over fitting especially when we have limited dataset available for training,
making our method more efficient in such scenarios.

5. Conclusion

Our work focused on computationally efficient semantic segmentation module for volumetric
data. We proposed a novel module Distill Depth shift module (Distill DSM) for efficiently
using the information along the depth dimension with negligible increase in the parameters
compared to 2D CNN. The proposed module can be inserted in any segmentation architec-
ture to make use of depth information. We were able to achieve either better or comparable
results to 3D CNN with only 28% of parameters. The proposed method was extensively
tested on various datasets including BRATS 2020 and 4 datasets from medical decathlon
challenge validating our the proposed method.
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