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Abstract

Chlamydia trachomatous is an infectious ocular condition that can cause the eyelid to turn
inward so that one or more eyelashes touch the eyeball, a condition call trachomatous trichi-
asis (TT), which can lead to blindness. Community-based screeners are used in rural areas
to identify patients with TT, who can then be referred for proper medical care. Having
automatic methods to detect TT will reduce the amount of time required to train screen-
ers and improve accuracy of detection. This paper proposes a method to automatically
identify regions of an eye and identify TT, using photographs taken with smartphones in
the field. The attention-based gated deep learning networks in combination with a region-
identification network can identify TT with an accuracy of 91%, sensitivity of 92% and
specificity of 87%, showing that these methods have the potential to be deployed in the
field.

Keywords: Trachoma, Trachomatus Trichiasis, image classification, attention based net-
works

1. Introduction

Trachoma is the leading infectious cause of blindness world-wide(Resnikoff et al., 2004;
Flueckiger et al., 2019). It is transmitted from person to person through ocular and nasal
secretions or eye-seeking flies carrying the infection from one person to another. Repeated
infections result in eyelid scarring, causing it to turn inwards and the eyelashes to touch the
eye, a condition called trachomatous trichiasis (TT). If not corrected, inturned eyelashes
can abrade the cornea, which can lead to blindness (West et al., 2006). Surgery is the
primary method for treating TT.

The majority of individuals with TT live in low- and middle-income countries where
access to health services is limited. Surgical campaigns are conducted to provide surgery
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through outreach services. To facilitate planning and align resources, individuals with TT
are often identified in advance and invited to the upcoming surgical camp. Current methods
for TT case identification are suboptimal. Often, local community members are asked to
serve as case screeners in their communities. These case screeners receive a brief training
on how to identify TT and then are asked to go door-to-door in their village to screen for
TT. These case screeners often have limited success at identifying TT appropriately, with
positive predictive values for case identification ranging from 15-30%(Greene et al., 2015).
The time and cost associated with door-to-door case finding is substantial(West, 2013),
and engaging case screeners with ophthalmology expertise to conduct this work is cost and
resource-prohibitive in many scenarios.

In this paper, we propose a method to close the gap between experts and non-experts in
assessing TT by increasing screening accuracy, and reducing the time required for training
community-based screeners. Previous work has demonstrated that early signs of trachoma
that present on the underside of the eyelid can be detected better than chance(Kim et al.,
2019). However, to our knowledge, we are the first to classify trichiatic eyelashes, a later
stage of the disease, using machine learning. We identify TT cases through attention-based
recurrent neural networks using automatically segmented regions of the eye. We chose this
method based on experiments performed on our data set as well as additional constraints
of computational cost for the algorithm, (i.e., it must be possible to run on a mobile device
in remote communities without reliable internet connectivity).

Figure 1: Examples of eyes with moderate TT (left two) and severe TT.

2. Data

We use images that were collected as part of the Maximizing Trichiasis Surgery Success
Trial (MTSS)(Bayissasse et al., 2020) in Ethiopia. The MTSS trial was designed to evalu-
ate three surgical approaches for correcting TT. A total of 5001 individuals with previously
unoperated TT were enrolled and followed for one year. Individuals were required to have
TT in at least one eye. At each study visit, images were taken of each upper eyelid, with
the participant looking up, using either a Motorola Moto X Pure edition or a Samsung
Galaxy 8 smartphone. After imaging, a trained study examiner evaluated each eyelid for
the presence of TT, defined as one or more eyelashes touching the eye or evidence of eyelash
removal through epilation. The examiner recorded the number and location of any trichi-
atic eyelashes in the study database. Images were transmitted to the coordinating center

634



ttUNETCrops-ttAttNet

at University of North Carolina at Chapel Hill, where they were assessed by a certified
photograph grader. For the work in this paper the grader marked images with moderate
or severe TT (based on number of eyelashes touching the eye, but no epilation) as having
TT, and the eyes without TT as normal/healthy. Figure 1 shows examples of moderate
and severe TT. In addition to images of eyes with TT, we collected upper eyelid images
of 1,121 adults without TT, from the same region in Ethiopia. The combined dataset has
6,048 images. From these, our grader marked the sclera, cornea and upper eyelid regions
of the eye for 1,113 images using a custom extension to 3D Slicer1 (Kikinis et al., 2014)2.
Figure 2 shows examples of the expertly segmented regions of the eye. A set of 1,706 images
with good quality were also identified for the task of classification.

(a) Normal eye (b) Severe TT

Figure 2: Training samples and corresponding label maps generated by an expert rater. The
sclera, cornea, and upper eyelid are shown in red, green and blue respectively.

3. Related work

Machine learning is becoming an increasingly popular means to screen for eye diseases and
disorders. Although, certain eye conditions, such as diabetic retinopathy (Asiri et al., 2019)
and glaucoma (Barros et al., 2020), have received considerable attention in the literature,
far less progress has been made on Neglected Tropical Diseases (NTDs), such as trachoma
despite TT impacting an estimated 2.8 million people worldwide (Flueckiger et al., 2019).
(Kim et al., 2019) performed a multi-step process to distinguish images of trachomatous
inflammation from normal eye images. The models were trained on images taken of partic-
ipant’s everted upper eyelid, labeled as follicular inflammation (TF), intense inflammation
(TI), or normal using the WHO simplified trachoma assessment system(Thylefors et al.,
1987). They used a multi-layer perception classifier to identify eyelid pixels followed by a
shallow convolutional network to detect trachoma. They found the less severe TF designa-
tion to be more difficult to identify consistently than TI.

Examples of detecting regions of the eye are seen in (Rot et al., 2018) and (Luo et al.,
2019). While (Luo et al., 2019) identify the pupil and sclera regions of the eye in widely
varying images using a shape constrained network, (Rot et al., 2018)’s method labels six
different regions of the eye including the eyelashes using an encoder-decoder scheme. These
methods are a) trained on images of healthy eyes, and b) do not identify the eyelid region,
which our method needs for TT identification.

1. www.slicer.org
2. https://slicer.readthedocs.io/en/latest/user_guide/modules/segmenteditor.html
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In general, a neural network (NN) can be trained either from scratch, or by adding a few
additional layers (Convolution, RNN, dense, etc.) to pretrained models to customize for the
classification or regression task. However, it is known that using pre-trained models instead
of training models from scratch leads to equal or superior performance (Zhou et al., 2017).
In our experiments, we use pre-trained weights (on the ImageNet(Deng et al., 2009) data
set) from VGG19(Simonyan and Zisserman, 2014), ResNet50 (He et al., 2016), MobileNetV2
(Sandler et al., 2018) NN architectures. The pre-trained weights from VGG19 have been
used to develop state-of-the-art classification (Su et al., 2015; Kanezaki et al., 2018; Ma
et al., 2018; Cho et al., 2014).

4. Methods

In this section we describe our analysis pipeline to detect if an eye has TT or not. Our
initial experiments to do binary classification using labeled TT and non-TT images directly
were unable to perform well, despite fine tuning several models. Hence, we focused on
a procedure by using areas around the upper eyelid (where human experts also diagnose
TT according to WHO protocols). As such, our final pipeline includes a segmentation,
extraction, and a concluding classification step.

We first train a residual UNET(Ronneberger et al., 2015; Zhang et al., 2018) to identify
cornea, sclera and upper eyelid regions of the eye in both healthy and TT-affected eyes. The
segmented upper eyelid region is then used to extract a sequence of upper eyelid images at
full resolution to train a TT classifier (ttAttNet). We first describe our pre-processing and
then explain ttAttNet.

Our pre-processing pipeline (ttUNETCrops) is shown in Figure 3(a). The main compo-
nents are the segmentation of the eye’s regions of interest (ROI) via UNET, and forming an
image sequence by cropping image regions around the upper eyelid. We use the segmenta-
tion network to locate our region of interest (i.e. upper eyelid) and focus the analysis on this
region. By doing so, we can perform the analysis at maximum resolution. The sequence of
image crops is created by fitting a curve in the upper eyelid ROI and sampling it uniformly
between [xmin, xmax], and extracting 32 contiguous cropped images around the eyelid ROI.

Figure 3(b) shows the sequence analysis pipeline (ttAttNet). ttAttNet uses a bi-directional
recurrent neural network (RNN) with Gated Recurrent Units (GRU)(Cho et al., 2014), and
Bahdanau additive attention layers(Bahdanau et al., 2014, 2016). The attention layers al-
low focusing on specific frames of the input sequence by computing weights that highlight
the importance of certain frames and reduce the contribution of others for the final net-
work decision. Moreover, these weights may be used for visually explaining predictions to
stakeholders or for additional analysis at a later stage.

We start by processing each frame of the sequence with a feature extraction and a global
average pooling layer in order to extract salient features. Thus, we reduce each frame in
the sequence (384x384 pixels) to a vector of (512 for VGG19, 2048 for ResNet50, 1280 for
MobileNetV2) features. Recurrent neural networks (RNN) with Long-short term memory
(LSTM)(Hochreiter and Schmidhuber, 1997) or GRUs units can then analyze this sequence
of 1-dimensional features. GRUs have been reported to have a slightly better performance
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(a) ttUNETCrops (b) ttAttNet

Figure 3: a) Image sequence creation at full image resolution. The segmentation produces
three labels for the sclera (red), cornea (green), and upper eyelid (blue). The
upper eyelid ROI is used to fit a smooth curve or polynomial (red line) which is
used to guide the extraction of crops and form an image sequence. The sequence
is analyzed by (ttAttNet). b) Feature extraction (FE) (VGG19, ResNet50 and
MobileNetV2) for each frame in the input sequence. Analysis using Bi-directional
Recurrent Neural Network (RNN) with Gated Recurrent Units (GRU) and at-
tention layers. The attention layers allows focusing on relevant frames of the
sequence.

than LSTM. LSTM networks also have more parameters and take longer to train (Fu et al.,
2016; Khandelwal et al., 2016).

We hypothesize that using images at lower resolution is not ideal for TT classification
since TT classification often requires detecting a few eye lashes pointing in the wrong
direction. In other words, these fine image details may be lost if the images are down
sampled, which is a common pre-processing step to use state of the art neural network
architectures for image classification. Nevertheless, customizing existing NN architectures
to handle images at larger resolution is possible, but it may not be computationally efficient.
On the contrary, in this paper, we propose to use existing architectures for image analysis
and focus only on the upper eyelid region using image patches at the highest resolution
level.

We compare the performance of our approach (ttUNETCrops+ttAttNet) with vari-
ous other approaches. For comparison we use: 1. Re-sampled images at 512x512, and
VGG19, ResNet50, and MobileNetV2 as feature extraction (output size of feature extrac-
tion is 16x16x512, 16x16x2048, 16x16x1280 respectively). 1.1 ttVGG19512: Features from
VGG19 and training an additional 2DConv layer (filter size 3x3, stride 2x2, 512 units),
and 3 fully connected (FC) layers (the 3 FC layers are part of the original VGG19 ar-
chitecture). 1.2 ttResNet50512 - ttMobileNetV2512: Features from ResNet50/MobileNetV2
and an additional 2DConv (filter size 3x3, stride 2x2, 2048/1280 units) and a FC layer.
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Label Precision Recall F1-score Dice

Background 0.99 0.98 0.99 0.98

Sclera 0.85 0.80 0.83 0.82

Cornea 0.85 0.91 0.98 0.88

Upper Eyelid 0.70 0.73 0.71 0.71

Table 1: Accuracy of segmentation task

2. Our approach which re-samples an input image to 512x512, segments the image to
locate the upper eyelid and extract a sequence of 32 images of size 384x384 at full reso-
lution (ttUNETCrops), followed by ttAttNet which analyzes the sequence of features ex-
tracted with VGG19, ResNet50, and MobileNetV2 (output size of feature extraction is
1x512, 1x2048, 1x1280 as we use a global average pooling layer on each). The ttAttNet
architecture is the same for all experiments as is shown in Figure 3(b).

5. Results

We select a set of 1,706 images (996 TT, 709 non-TT) images with good quality around
the eyelid region for classification. Our grader marked the sclera, cornea and upper eyelid
regions of the eye for 1,113 images. These are somewhat different sets of images, with an
overlap of 455 images that have both manual segmentations and TT grading. From this
overlap set we randomly chose 308 images to test our approach. In summary, 73% for
training and 27% for testing the UNET segmentation, and 82% for training and 18% for
testing the classification. A validation set is randomly chosen (10%) from the training set
during training of each network. We use the validation set to stop the training using the
early-stopping criteria and avoid over/under-fitting.

5.1. ttUNETCrops

The residual UNET was trained using the images segmented by our expert grader as ground
truth. The training went for 124 epochs, the learning rate was set to 1e−4, dropout rate was
set to 0.15, Adam optimizer and a categorical cross entropy loss function to discriminate
between 4 classes (background, sclera, cornea, and upper eyelid).

Figure 4: Segmentation results for randomly chose samples in our data set. The fitted curve
guides the extraction of contiguous image crops.
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NN input class precision recall f1-score accuracy

ttVGG19512 16x16x512
normal 0.84 0.72 0.78

0.83
tt 0.81 0.91 0.86

ttResNet50512 16x16x2048
normal 0.90 0.73 0.81

0.85
tt 0.82 0.94 0.87

ttMobileNetV2512 16x16x1280
normal 0.87 0.70 0.78

0.82
tt 0.79 0.92 0.85

ttAttNetV GG19 32x512
normal 0.78 0.84 0.81

0.87
tt 0.92 0.88 0.90

ttAttNetResNet50 32x2048
normal 0.87 0.86 0.87

0.91
tt 0.92 0.93 0.93

ttAttNetMobileNetV 2 32x1280
normal 0.83 0.81 0.82

0.87
tt 0.89 0.91 0.90

Table 2: Classification results for different architectures and feature extraction methods.
ttVGG19512, ttResNet50512 and ttMobileNetV2512 use the features extracted with
the respective networks as inputs of images re-sampled to 512x512. No pooling
operation is applied. The ttAttNet networks use features extracted for each of the
32 frames (384x384) in the sequence and a global average pooling.

Table 1 shows the results for the image segmentation task. The dice score for the eyelid,
which is the most important ROI for our experiment, is 0.71. This is an acceptable outcome
for the next phase of the analysis and it will be demonstrated by our classification results.
Figure 4 shows the segmentation plus polynomial fitting for randomly chosen samples in
our data set.

5.2. ttAttNet

In our experiments, we trained different neural networks to evaluate the performance of the
classification task. Table 5.2 shows the result of the classification task for all the networks
evaluated. ttAttNetV GG19, ttAttNetResNet50 and ttAttNetMobileNetV 2 trained for 4, 7, 5
epochs respectively. Learning rate was set to 1e − 4, Adam optimizer and a categorical
cross entropy loss function to discriminate between normal and tt is used.

Our approach of classifying a sequence of cropped images around the ROI of upper eyelid
outperforms the classification of full images, even if different feature extraction schemes are
used, with ResNet giving an overall accuracy of 91%. The weights computed by the attention
layers may be used for further analysis or to visualize the most relevant frames. Figure 5
shows the top 3 frames selected by the attention layer.

6. Conclusions

In this work, we have proposed an approach to analyze high resolution images of eyes
captured by commercial phones, and identify TT - an infectious disesase of the eye. By
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Figure 5: The weights produced by the attention layers may be used for visualization and
validation. The figure shows the top 3 frames selected by the forward (magenta)
and backward (cyan) attention layers. Both images show eyelashes pointing in-
wards towards the eye detecing TT. Both examples were misclassified by the
ttVGG19512 NN.

focusing the analysis only to the region of interest, we have demonstrated that we can
achieve an f1-score of 0.93 using full resolution images vs. 0.87 when the images are re
sampled to 512x512. This pipeline is to be deployed on mobile devices; hence, there are
computational constraints and the trained models need to be as lean as possible without
compromising the accuracy of the classification. Re-sampling the images to 512x512, using
state-of-art neural networks for feature extraction and training an additional few layers
yields a higher number of parameters and lower accuracy than the proposed approach. The
experiments in this paper demonstrate that using image samples at full resolution is needed
to have the best possible accuracy for TT prediction, as it may come down to identifying a
single eyelash pointing in the wrong direction. Section 7.2 shows a summary of the number
of parameters for each neural network used in this paper. The attention weights can be used
to display which frames of the sequence contribute to the final decision of the pipeline. The
results from the attention modules used in ttAttNet indicate that anomalies in the eyelid are
a great indicator to classify normal v.s. TT images. Down sampling the images to enable
other architectures results in lower accuracy. During our analysis, we also found that image
quality, resolution, and TT severity played a role in the accuracy of the classification. A
standardized protocol for taking the photos is followed, which includes using similar quality
cameras at same distances from the patient. In future, we will assess the robustness of our
models when the protocol is not followed. Our future work will also create classification
models to predict severity of TT, include mild cases of TT, as well as images with epilation.

This paper reports the first step in demonstrating that machine learning is an achievable
approach to TT identification. The MTSS trial has demonstrated that smartphone-näıve
individuals can be trained how to navigate a simple app and take high-quality images of
the human eyelid. Future steps will require employing the methods described here into a
smartphone-ready app and then assessing app functionality in the field. Ultimately, this line
of work has the potential to impact the global approach to TT case finding by increasing
screening accuracy and subsequently getting patients who need TT management access to
sight-saving services.
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7. Appendix

7.1. Early stopping and number of epochs

The number of epochs for our experiments are set based on the early stopping criteria,
i.e., after the validation loss stops improving. The number of epochs for ttVGG19512,
ttResNet50512 and ttMobileNetV2256 is set to 4, 27, 6.

7.2. Number of parameters for each neural network
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NN Parameters Total

VGG19Fextraction 20,024,384 -

ResNet50Fextraction 23,587,712 -

MobileNetV2Fextraction 2,257,984 -

ttVGG19512 153,362,432 173,386,816
ttResNet50512 37,752,832 61,340,544
ttMobileNetV2512 14,748,160 17,006,144

ttUNETCrop 14,160,352 -

ttAttNetV GG19 6,303,748 40,488,484
ttAttNetResNet50 11,022,340 49,358,212
ttAttNetMobileNetV 2 8,663,044 25,081,380

Table 3: Number of parameters for each architecture. The total includes the parameters
from the feature extraction + the additional layers trained for each architecture.
For the ttAttNet rows, it includes the parameters from ttUNETCrop as well.
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