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Abstract

We present a deep learning (DL) registration framework for fast mono-modal and multi-
modal image registration using differentiable mutual information and diffeomorphic B-
spline free-form deformation (FFD). Deep learning registration has been shown to achieve
competitive accuracy and significant speedups from traditional iterative registration meth-
ods. In this paper, we propose to use a B-spline FFD parameterisation of Stationary
Velocity Field (SVF) to in DL registration in order to achieve smooth diffeomorphic defor-
mation while being computationally-efficient. In contrast to most DL registration methods
which use intensity similarity metrics that assume linear intensity relationship, we apply a
differentiable variant of a classic similarity metric, mutual information, to achieve robust
mono-modal and multi-modal registration. We carefully evaluated our proposed frame-
work on mono- and multi-modal registration using 3D brain MR images and 2D cardiac
MR images.

1. Introduction

Image registration is an essential task in medical image analysis. Given a moving imageM
and a fixed image F , image registration aims to find the spatial transformation φ which maps
a location x in F to the location with corresponding tissue or structure inM. In traditional
approaches, a regularised transformation is embedded in an optimisation problem that
minimises a dis-similarity metric between the fixed image F and the transformed moving
image M◦ φ. This optimisation problem is commonly solved in an iterative way (Sotiras
et al., 2013). Despite being effective, many iterations are often required to register one pair
of images in such optimisation-based methods which can be very time consuming.

Recently, researchers have explored data-driven methods and the use of deep learning
in image registration (Rueckert and Schnabel, 2020). Although often time-consuming in
training, DL-based registration networks can perform one-pass registration during infer-
ence substantially faster than iterative optimisation methods. Recently proposed so-called
unsupervised DL registration methods train networks using intensity-based similarity met-
rics instead of (synthesised) ground truth transformations (Balakrishnan et al., 2019; de Vos
et al., 2019; Qin et al., 2018, 2020; Qiu et al., 2019). Most unsupervised methods use Mean
Squared Error (MSE) or Cross-correlation (CC) as image matching criterion, and thereby
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assume either identity or a strong linear relationship between the intensities of the images.
However, these metrics are often ineffective when there are complex non-linear intensity
relationships, e.g. in contrast-enhanced images or images from different modalities.

In this paper, we adopt a classic information-theoretic similarity metric, mutual infor-
mation (MI), in unsupervised DL registration to handle non-linear intensity relationships.
MI has been widely used in traditional registration algorithms for robust multi-modal reg-
istration (Pluim et al., 2003). However, MI is commonly computed using non-differentiable
intensity histogram construction, making it challenging to be directly applied in DL reg-
istration. To compute MI in a differentiable way, we adopt the formulations introduced
in Thévenaz and Unser (2000) and use continuous Parzen windows (PW) to estimate dif-
ferentiable intensity distributions. In addition, we propose to use a B-spline FFD based
diffeomorphic transformation model in our DL registration framework. Specifically, we use
CNNs to learn a B-spline model of stationary velocity fields (SVF) over the entire image do-
main to obtain diffeomorphic transformations, to take advantage of the parameter-efficiency
and intrinsic smoothness of B-splines.

The main contributions of our work are as follows: 1) We propose to learn a diffeo-
morphic SVFs parameterised efficiently by B-spline FFD to achieve fast and smooth dif-
feomorphic registration; 2) We use a differential formulation of mutual information in a
whole-image DL registration framework to register images across modalities; 3) We care-
fully evaluate the introduced components on both mono-modal and multi-modal registration
tasks using 3D brain MR images and 2D cardiac MR images.

2. Related works

Some recent learning-based registration methods specifically address multi-modal or modality-
invariant registration problem. One approach is to use segmentation of the anatomical struc-
tures to guide registration, when a large amount of segmentation is available for training
(Hu et al., 2018). Another approach is to reduce the problem to mono-modal registration via
image-to-image translation (Arar et al., 2020) or disentanglement (Qin et al., 2019). These
methods utilise powerful advances in deep learning generative models but cannot explicitly
guarantee that the structures are not changed during the intensity transformation, and often
have complicated frameworks that are non-trivial to train. Towards modality-invariant reg-
istration, Hoffmann et al. (2020) proposed to use contrast-varying synthetic images to train
contrast-invariant registration networks. Most related to our work, de Vos et al. (2020) also
adopts mutual information for DL registration. In contrast to their method, our approach
uses fully convolutional network to parameterise registration over the entire image domain
instead of patches and employs a diffeomorphic transformation model. We also evaluated
our framework on more challenging inter-subject multi-modal registration tasks.

3. Methods

3.1. Mutual information in DL registration

Mutual information relaxes the linear intensity relationship constraint and measures infor-
mation that one image contains about another image based on their intensity distributions.
Studholme et al. (1999) later introduced Normalised Mutual Information (NMI) which is
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more invariant to the amount of overlap between the two images. Here, we introduce the
formulation of a differentiable estimate of NMI to enable its use in DL registration. In the
context of image registration, NMI can be written as:

INMI(F ,M◦ φ) =
H(F) +H(M◦ φ)

H(F ,M◦ φ)
, (1)

where H(F) and H(M◦ φ) denote the marginal entropies of the fixed and moved images,
and H(F ,M◦ φ) denotes the joint entropy. The entropy of an image I can be defined as
H(I) = −

∫
i p(i) ln(p(i))di where p(i) is the intensity distribution of image I. To estimate

this intensity distribution in digital images, one can construct histograms as discretised
estimation of the distributions. This is usually achieved by counting the number of inten-
sities or (intensity-pairs) that fall into intensity bins, which is mathematically equivalent
to adding a rectangular window function centred at the intensity value of each point in
the images to the histogram (pair of points for joint histogram). However, the rectangular
window function makes the constructed histogram non-differentiable. To use MI in deep
learning registration, we need a differentiable way to construct the intensity histogram to
allow back-propagation and gradient-based training of the networks. To this end, we use
a differentiable Parzen window (PW) (Thévenaz and Unser, 2000) instead of the rectangu-
lar window, as illustrated in Figure A2 in the Appendix. Formally, the joint histogram is
computed as:

h(f,m) =
∑
x∈Ω†

w (F(x)− f)w (M(x ◦ φ)−m) , (2)

where f,m denotes intensity values on the fixed and moved images, Ω† denotes all points
in the overlapping image domain, and w(·) is the Parzen window function. Normalising the
joint histogram yields the joint distribution:

p(f,m) =
h(f,m)∑

f∈LF ,m∈LM◦φ h(f,m)
. (3)

where LF and LM◦φ denotes the bin centres where the histogram is evaluated. We opt
to use the Gaussian function as the Parzen window, which fulfils the partition-of-unity
constraint and is easy to compute, namely w(i) = 1√

2πσ
· exp(− i2

2σ2 ). The σ is chosen so

that the Full Width at Half Maximum (FWHM) of the function is one bin-width. The
marginal distributions are estimated by marginalising the joint distribution, i.e. p(f) =∑

m∈LM
p(f,m) and p(m) =

∑
f∈LF

p(f,m). Finally, we can compute the entropies and
the NMI using Eq 1 with the joint and marginal distributions. We compute this effeciently
using vectorised operations to combine with DL registration.

3.2. Registration framework

Here we introduce our deep learning registration framework, as illustrated in Figure 1. We
focus on deformable registration of images after affine alignment. We follow the approach
of (Dalca et al., 2018) and use a convolutional neural network (CNN) with parameters θ
to map the fixed and moving images to the parameters of the transformation. Instead of
directly outputing the velocity fields as in Dalca et al. (2018), our network (detailed in 3.2.2)
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outputs the velocities of the B-spline control points vβ, from which we can compute the
transformation φ via B-spline tensor product and Squaring and Scaling (detailed in 3.2.1).
During training, the moving imageM is warped using φ via linear interpolation to acquire
the moved imageM◦ φ which is then used to compute similarity loss LSim(F ,M◦ φ). We
iterate over pairs of fixed-moving images in a training dataset to find the network parameters
θ̂ that minimises the similarity loss LSim with the constraint of the regularisation loss LReg.
The overall loss can be written as,

L(F ,M◦ φ) = LSim(F ,M◦ φ) + λLReg (4)

where LSim = −INMI is the negative Normalised Mutual Information and LReg is a regu-
larisation on the velocity field v to further enforce smoothness and diffeomorphism (Beg
et al., 2005):

LReg =
1

|Ω|
∑
x∈Ω

∑
d∈D

∥∥∥∥∂v(x)

∂d

∥∥∥∥2

2

(5)

where Ω denotes all points in the image domain and d denotes the spatial dimension.DL Registration framework
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Figure 1: Our DL registration framework. The CNN predicts time-stationary velocities of
the control points, and transformation is obtained by evaluating B-spline functions at the
control points and efficient integration via Scaling and Squaring. The similarity loss based
on MI and the smoothness regularisation loss is only needed for training.

3.2.1. Transformation

Diffeomorphic transformation is topology preserving and invertible, which are desirable
properties for some medical image registration applications. To ensure these properties,
we use the flow of diffeomorphisms generated by the group exponential of spatially smooth
Stationary Velocity Fields (SVFs). The diffeomorphic transformation φ is the group ex-
ponential of the time-stationary velocity field v, i.e. φ = exp (v), which can be efficiently
computed using the Scaling and Squaring (SS) algorithm (Arsigny et al., 2006). To rep-
resent SVFs in a parameter efficient way while taking advantage of implicit smoothness
of spline functions (Modat et al., 2012), we propose to use the cubic B-spline parameteri-
sation of SVFs (SVFFD) in our deep learning registration framework. The CNN outputs
the velocities of a grid of B-spline control points vβ with regular spacing δ. And the dense
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velocity field is obtained using a weighted combination of cubic B-spline basis functions β(·)
(Rueckert et al., 1999):

v(x) =
∑
c∈C

vβc
∏
d∈D

βd(xd − kc,d)), (6)

where c is the index of the control points on the control point grid C, k denotes the
coordinates of the control points in image space. The displacement field is obtained from
the SVF via scaling and squaring. Since the B-spline basis function has limited local support,
Eq. 6 can be implemented using transposed convolution with pre-computed B-spline basis
functions as kernels.

3.2.2. Networks

To learn the velocities of the B-spline control points vβ, we use a fully convolutional network
adapted from a U-net based architecture, as shown in Figure B3 in the Appendix. In order to
support different control point spacings, we dynamically adapt the base U-net architecture
so the output matches the size of the control point grid. To achieve this, we keep the U-net
decoder layers that produce the largest feature map smaller than the size of the control point
grid. Then we apply a linear interpolation layer to resize the feature map to match the size
of the control point grid. This allows the use of arbitrary control point spacing. Finally, we
apply three convolution layers to predict the output velocities. All convolution layers use a
kernel size of 3 in all spatial dimensions and a LeakyReLU nonlinearity with negative slope
of 0.2. No nonlinearity function is applied to the final layer. The same architecture is used
for 2D and 3D.

4. Experimental Settings

4.1. Tasks and Data

We evaluate the proposed framework on three tasks: inter-subject 3D brain MRI registra-
tion of 1) T1w-T1w volumes; 2) T1w-T2w volumes; and 3) cardiac motion estimation via 2D
registration between end-diastolic (ED) frame and end-systolic (ES) frame of cardiac MR
images. For the brain registration task, we use 3D T1w and T2w images of 310 randomly se-
lected subjects from the Cambridge Centre for Ageing and Neuroscience (CamCAN) project
(Shafto et al., 2014; Taylor et al., 2017). The images have isotropic spatial resolution with
voxel size of 1mm3 and are cropped to the size of 176× 192× 176. All images are spatially
normalised to a common MNI space using affine registration, skull-stripped using ROBEX1

and bias-field corrected using the N4 algorithm in SimpleITK2. For evaluation, we also ac-
quired the segmentation of 138 cortical and sub-cortical structures (grouped into 5 groups)
automatically using MALPEM (Ledig et al., 2015). For cardiac motion estimation, we use
2D cardiac MR images of 210 subjects from the UK Biobank study3. The images have
in-plane resolution of 1.8mm × 1.8mm and are cropped to the size of 192 × 192. The seg-
mentation of left ventricle cavity (LV), myocardium (MYO) and right ventricle (RV) are

1. https://www.nitrc.org/projects/robex
2. https://simpleitk.org
3. UK Biobank Imaging Study. http://imaging.ukbiobank.ac.uk
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acquired using a state-of-the-art CNN-based automatic segmentation algorithm (Bai et al.,
2018).

4.2. Evaluation metrics

We evaluate both the accuracy and the transformation regularity of registration. We evalu-
ate the accuracy by measuring the overlap between the anatomical segmentation of the fixed
image and the segmentation transformed by φ in the moving image using Dice score. The
transformation regularity is evaluated based on the determinant of the Jacobian J = |∇φ|.
We evaluate the amount of points in the image that are “folded” due to the transforma-
tion by the ratio of points with J < 0. We also evaluate the spatial smoothness of the
transformation by measuring the magnitudes of the gradient of the Jacobian determinant
|∇J |.

4.3. Baseline comparisons

The presented deep learning registration framework using mutual information and B-spline
SVF (denoted by “MIDIR”) is firstly compared to a traditional iterative registration method
based on the SVFFD transformation model. We also compare to a state-of-the-art DL
registration method proposed in Dalca et al. (2018) (the deterministic version) combined
with our differentiable mutual information, denoted by “VMNMI”. For the mono-modal
tasks, we also compare to variants of methods that use localised normalised cross-correlation
(LNCC) as similarity. The evaluation metrics at the initial affine registration (“Affine”)
is also provided for reference. The B-spline control point spacing δ and regularisation
weighting λ are hyper-parameters. For all competing models, we carefully tuned these
hyper-parameters using a held-out validation dataset while considering the balance between
registration accuracy and transformation regularity. The hyper-parameters that yield best
mean Dice score, with under 0.5% of the points with |∇φ| < 0 were chosen. Hyper-
parameter values of all results are shown in the Appendix C.

4.4. Implementation details

The traditional SVFFD method is implemented using Medical Image Registration ToolKit
(MIRTK) (Schuh et al., 2014)4. The DL registration frameworks are implemented using
Pytorch v1.5.15. To reduce GPU memory usage, we compute NMI on a subset (50%) of
randomly sampled positions in the image space at each iteration. The Adam optimiser was
used with an initial learning rate of 1e-4. Learning rate decay of 1/10 per 50 epoch was
used for all brain registration models. Running speed were measured on a workstation with
an Intel® i7-8700 CPU and NVIDIA® Titan Xp GPUs. Our code is available at this url.

5. Results

Table 1 presents the quantitative evaluation of all models on all brain MR and cardiac
MR registration tasks. We performed two-sided Wilcoxon signed-rank test to check for

4. https://mirtk.github.io
5. https://pytorch.org
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statistical significance in differences between methods (significant if p-value is smaller than
0.05). On T1w-T1w tasks, the traditional SVFFD method outperformed all DL methods
on Dice score while achieving good transformation regularity. Methods using LNCC as
similarity achieved better Dice accuracy than the ones use NMI. Our MIDIR performed
similarly to the baseline VM framework when the same similarity metric is used. On T1w-
T2w registration, similar to T1w-T1w, methods using LNCC as similarity quantitatively
achieved better results than those using NMI as similarity, with the traditional SVFFD
using LNCC outperforming all other methods. The proposed MIDIR frameworks achieved
similar Dice accuracy but significantly better regularity than the VM baseline. On the
cardiac motion task, the DL models are on-par with traditional SVFFD when LNCC is used
as similarity but significantly more accurate when NMI is used as similarity. Our MIDIR
models achieved competitive accuracy and marginally better regularity on this task. The
boxplots in Figure C4-C9 in the Appendix show the distribution of the results over test
subjects. It can be noticed that traditional SVFFD produced more dispersed results with
more outliers than DL methods. This could be an advantage of using a DL frameworks
for the same transformation model, since the more complex CNN can learn a prior from a
dataset to produce more consistent results. Some visual examples of the registration results
are shown in Figure D10-D12 in the Appendix.

The runtime for each method to register one pair of 2D or 3D images are also reported
in Table 1. Both CPU and GPU inference times are shown for a fair comparison with the
CPU-based MIRTK (SVFFD). DL models are substantially faster on CPU and GPU. Our
parameter-efficient MIDIR models run faster than the dense VM models especially on 3D
tasks.

Table 1: Quantitative results on brain and cardiac registration tasks. The Dice score of
different anatomical structures are averaged. J<0% denotes the percentage of points with
negative Jacobian determinant, higher means more ”folding”. |∇J | denotes the gradient
magnitude of the Jacobian determinant, lower value means spatially smoother.

Brain T1w-T1w Brain T1w-T2w Cardiac Motion Runtime (2D/3D)

Methods Dice J<0% |∇J | Dice J<0% |∇J | Dice J<0% |∇J | CPU GPU

Affine 0.619 - - 0.619 - - 0.500 - - - -

SVFFDLNCC 0.836 0.107 0.024 0.770 0.150 0.027 0.781 0.161 0.045 43.3s/44min24s -
VMLNCC 0.814 0.295 0.051 0.753 0.176 0.047 0.797 0.094 0.034 115ms/17.7s 6.48ms/228ms
MIDIRLNCC 0.816 0.238 0.044 0.743 0.090 0.039 0.806 0.096 0.029 116ms/11.8s 4.78ms/124ms

SVFFDNMI 0.822 0.118 0.023 0.728 0.135 0.027 0.701 0.080 0.016 1min10s/3min34s -
VMNMI 0.807 0.106 0.038 0.733 0.197 0.047 0.797 0.151 0.036 115ms/17.7s 6.48ms/228ms
MIDIRNMI 0.813 0.121 0.038 0.735 0.023 0.028 0.803 0.151 0.033 116ms/11.8s 4.78ms/124ms

6. Discussion

The quantitative results show that the traditional SVFFD method outperforms the DL
methods in several settings. SVFFD performs slow but detailed optimisation for each pair
of images, while the DL methods perform one-pass fast predictions but less accurately
in its current form. Our traditional baseline also employs a multi-resolution framework
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which improves optimisation and registration accuracy, while the DL methods only use one
resolution.

Our experiments also show that LNCC outperformed NMI on several settings, and
perhaps interestingly so on T1w-T2w registration. The intensity relationships between
T1w and T2w images in our dataset, when observed locally, can be roughly described by
intensity inversion and could be handled by LNCC. However, (L)NCC can not be expected to
be applicable to other multi-modal registration with more complex appearance and intensity
relationships, such as MR-PET or MR-CT, while (N)MI is more generally applicable (Sotiras
et al., 2013). Experiments with more multi-modal data is therefore required to demonstrate
this, which we will investigate in the future. On the other hand, a major drawback of globally
evaluated (N)MI is that no spatial information in the image is considered (Rueckert et al.,
2000). We also empirically found that the training of NMI models are more dependent
on spatial regularisation. Other similarity-invariant similarity metrics such as Normalised
Gradient Fields (NGF) has also been explored in DL registration where rich amount of edges
of the structures of interest can be found in the images (Hering and Heldmann, 2019), which
could also be compared to for multi-modal registration.

Noticeably, folding are still present in experimental results for all methods despite using
the diffeomorphic SVF transformation. If topology preservation is required for specific ap-
plications, it can be achieved by changing the hyperparameters. The velocity field could be
enforced to be smoother to achieve diffeomorphism by increasing the smoothness regulari-
sation, often at a cost of substantial drop in Dice accuracy; the number of time steps used
in the Scaling-and-Squaring (SS) algorithm to approximate the continuous integral can be
increased to reduce folding but with an increased computational cost. In this paper, we
carefully tune the hyper-parameters within the constraints of our computational resource
so that the presented results are more comparable for a general evaluation.

7. Conclusions

In this work, we present a deep learning framework trained using differentiable mutual in-
formation for fast and robust mono- and multi-modal image registration. We also propose
to use a parameter-efficient B-spline free form deformation (FFD) via stationary velocity
field (SVF) for smooth and diffeomorphic deformation. Evaluation results show that the
proposed framework achieves competitive registration accuracy and transformation regu-
larity across modality settings while being computationally more efficient. In future works,
we will study the sensitivity of hyper-parameters, evaluate the different approaches on more
diverse multi-resolution tasks, and investigate adding multi-resolution scheme and incorpo-
rating multi-step optimisation in DL registration.
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Appendix A. Parzen window illustration

Figure 2: 1D illustration of histogram estimation using the rectangular window (left), known
as binning, and Gaussian function as Parzen window (right). The horizontal axis shows the
bin number in the intensity range. The red triangles mark the intensity value of one sample
point in the image and the red arrows indicate the values that this sample contributes to
the histogram at the evaluated bin centres iι.

Appendix B. Network architecture
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Figure 3: The architectures of: a) The base U-net architecture for direct prediction of
dense fields; and b) Our network for prediction of the control point velocities vβ for B-
spline parameterised SVFs. The example network shown here is configured for control point
spacing of 4 (pixels/voxels). The resolution relative to the original images and number of
channels are shown below each data block.
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Appendix C. Hyper-parameters

Table 2: Hyper-parameters of all methods producing the results shown in the paper. δ
is the spacing of the B-spline control point grid (in image space). λ is the regularisation
weight introduced in 4, for SVFFD is the weighting on Bending Energy regularisation loss.

Brain T1w-T1w Brain T1w-T2w Cardiac Motion

Methods δ λ δ λ δ λ

SVFFDLNCC 4 10−3 6 10−4 4 10−3

VMLNCC - 0.1 - 0.1 - 0.1
MIDIRLNCC 2 0.1 2 0.1 2 0.1

SVFFDNMI 8 10−5 7 10−5 4 10−6

VMNMI - 0.1 - 0.05 - 0.1
MIDIRNMI 2 0.08 2 0.1 2 0.1

Other hyper-parameters:

• Window size when computing LNCC: 7

• Number of bins used when computing NMI: 32 for SVFFD on cardiac registration, 64
for all other experiments

Appendix D. Boxplots of quantitative results
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Figure 4: Boxplot of Dice results for brain T1w-T1w registration. The red lines in the boxes
mark the mean value and the black lines mark the median. Results are shown for different
groups of anatomical structures (GM stands for Grey Matter), with the Mean Dice over all
structures on the right most.
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Figure 5: Boxplot of regularity results for brain T1w-T1w registration.
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Figure 6: Boxplot of Dice results for brain T1w-T2w registration. Similar configuration as
Figure 4.

659



Learning Diffeomorphic and Modality-invariant Registration using B-splines

Methods
0.00%

0.20%

0.40%

0.60%

0.80%

1.00%
J<

0
SVFFDLNCC

VMLNCC

MIDIRLNCC

SVFFDNMI
VMNMI

MIDIRNMI

(a) Folding (J < 0)

Methods

0.01

0.02

0.03

0.04

0.05

|
J|

SVFFDLNCC

VMLNCC

MIDIRLNCC

SVFFDNMI
VMNMI

MIDIRNMI

(b) Smoothness (|∇J |)

Figure 7: Boxplot of regularity results for brain T1w-T2w registration.
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Figure 8: Boxplot of Dice results for cardiac MR registration. Results are shown for Left
Ventricle volume (LV), Myocardium (Myo) and Right Ventricle volume (RV).

Appendix E. Visualisation of images and transformations

660



Learning Diffeomorphic and Modality-invariant Registration using B-splines

Methods
0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

J<
0

SVFFDLNCC

VMLNCC

MIDIRLNCC

SVFFDNMI
VMNMI

MIDIR(ours)

(a) Folding (J < 0)

Methods

0.01

0.02

0.03

0.04

0.05

|
J|

SVFFDLNCC

VMLNCC

MIDIRLNCC

SVFFDNMI
VMNMI

MIDIR(ours)

(b) Smoothness (|∇J |)

Figure 9: Boxplot of regularity results for cardiac MR registration.

Figure 10: An example axial slice of brain MR T1w-T1w registration from all competing
methods. The rows are the target fixed image, the moving image transformed by registration
(moved), the error of the registration (white indicates zero error, red means positive and
blue means negative) and the transformation.
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Figure 11: An example axial slice of brain MR T1w-T2w registration results. Same configu-
ration as Figure 10, except the error is between the fixed image (T1w) and the transformed
T1w image from the same subject as the moving T2w image, which is initially perfectly
aligned with the T2w image.
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Figure 12: Example registration of an ED frame (fixed image) of mid-ventricle slice with
the ES frame (moving image) of the same sequence. Same configuration as Figure 10.
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