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Abstract

We systematically evaluate the performance of deep learning models in the presence of
diseases not labeled for or present during training. First, we evaluate whether deep learning
models trained on a subset of diseases (seen diseases) can detect the presence of any one of
a larger set of diseases. We find that models tend to falsely classify diseases outside of the
subset (unseen diseases) as “no disease”. Second, we evaluate whether models trained on
seen diseases can detect seen diseases when co-occurring with diseases outside the subset
(unseen diseases). We find that models are still able to detect seen diseases even when
co-occurring with unseen diseases. Third, we evaluate whether feature representations
learned by models may be used to detect the presence of unseen diseases given a small
labeled set of unseen diseases. We find that the penultimate layer of the deep neural
network provides useful features for unseen disease detection. Our results can inform the
safe clinical deployment of deep learning models trained on a non-exhaustive set of disease
classes.
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1. Introduction

Safe clinical deployment of deep learning models for disease diagnosis would require models
to not only diagnose diseases that they have been trained to detect, but also recognize
the presence of diseases they have not been trained to detect for possible deferral to a
human expert (Mozannar and Sontag, 2021; Rajpurkar et al., 2020). Medical imaging
datasets used to train models typically only provide labels for a limited number of common
diseases because of the challenge and costs associated with labeling for all possible diseases.
For example, some serious diseases, including pneumomediastinum, are not part of any
commonly used chest X-ray databases (Irvin et al., 2019; Johnson et al., 2019; Wang et al.,
2017). However, it is unknown whether deep learning models for chest x-ray interpretation
can maintain performance in presence of diseases not seen during training, or whether they
can detect the presence of such diseases.

In this study, we provide a systematic evaluation of deep learning models in the presence
of diseases not labeled for or present during training. Specifically, we first evaluate whether
deep learning models trained on a subset of diseases (seen diseases) can detect the presence
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Figure 1: Overview of the experimental setup. A. Chest X-ray image labels include “No
Disease”, three seen diseases, and six unseen diseases. B. Training data setup
for the four multi-label models. The Subset-Unlabeled model is trained with all
images in the train set, with the labels of “No Disease” and three seen diseases,
while excluding the labels of six unseen diseases. The Subset-Unseen model is
trained with only the images that do not have any of the six unseen diseases. The
All Diseases model is trained with all images and all ten labels (“seen” diseases,
“unseen” diseases and “no disease”), and serves as a control. The Any Disease
model is trained with all images for either having “any disease” or “no disease”,
and serves as another control. C. Three outputs from the models - final prediction
layer, penultimate (intermediate) layer, and visualization map are used to train
unseen disease classifiers, to predict the “unseen score” (whether an unseen disease
is present during testing).

of any one of a larger set of diseases. We find that models tend to falsely classify diseases
outside of the subset (unseen diseases) as “no disease”. Second, we evaluate whether models
trained on seen diseases can detect seen diseases when co-occurring with diseases outside
the subset (unseen diseases). We find that models are still able to detect seen diseases even
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when co-occurring with unseen diseases. Third, we conduct an initial exploration of unseen
disease detection methods, focused on evaluation of feature representations. We evaluate
whether feature representations learned by models may be used to detect the presence of
unseen diseases given a small labeled set of unseen diseases. We find that the penultimate
layer provides useful features for unseen disease detection. Our results can inform the
safe clinical deployment of deep learning models trained on a non-exhaustive set of disease
classes.

2. Related Work

Traditional machine learning frameworks assume a “closed world” assumption, where no
new classes exist in the test set. However, in real world applications, trained models could
encounter new classes. Deep learning models for image recognition are known to suffer
in performance when applied to a test distribution that differs from their training distri-
bution (Hendrycks and Gimpel, 2016; Quionero-Candela et al., 2009; Sathitratanacheewin
and Pongpirul, 2018; Pooch et al., 2019). Several methodologies have been explored in
computer vision for novelty or abnormality detection, including reconstruction-based meth-
ods, self-representation, statistical modeling, and deep adversarial learning (Pimentel et al.,
2014; Xu et al., 2015; Markou and Singh, 2003). Several methodologies were explored for
open set clinical decision making showing no clear superior techniques (Kingma et al., 2019).
However, most methodologies are designed for multiclass problems but not multi-label prob-
lems (Geng et al., 2020; Bendale and Boult, 2016). Specifically for healthcare applications,
there have been limited studies on out-of-distribution medical imaging (Cao et al., 2020;
Mårtensson et al., 2020), with no previous studies investigating the performance of medical
imaging classification models when facing unseen diseases.

3. Methods

3.1. Data

We form a dataset which has disease labels split into two categories: “seen diseases” and
“unseen diseases” (Figure 1 A). We modify the CheXpert dataset, consisting of 224,316 chest
radiographs from 65,240 patients labeled for the presence of 14 observations (Irvin et al.,
2019). To be able to split disease labels without overlap, we remove children and parent
label classes shared by diseases, specifically the Enlarged Cardiomediastinum, Airspace
Opacity and Pneumonia label classes. We also remove the Support Devices label, as it is
a clinically insignificant observation. We divide the remaining labels into four seen labels
(No Disease, Consolidation, Pleural Effusion, Cardiomegaly), and six unseen labels (Pleural
Other, Edema, Lung Lesion, Atelectasis, Fracture, and Pneumothorax). This division is
based on each disease’s prevalence in the dataset in order to evaluate model performance
when trained only on commonly occurring diseases (Figure 1A). We use the CheXpert
validation set to select models and to train unseen disease classifiers, which is a set of 200
labeled studies, where ground truth was set by annotation from a consensus of 3 radiologists.
We use the CheXpert test set, which consists of 500 chest x-ray studies annotated with a
radiologist majority vote, to evaluate the performance of models.
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3.2. Multi-Label Models

We train four multi-label models with different sets of images and labels, and evaluate the
multi-label models on their disease detection performance. An overview of the models’
setup is outlined in Figure 1 B.

All Diseases (Control) The All Diseases model is trained with all images and all ten
disease labels (“no disease” and both seen and unseen), and serves as a comparison to
models trained on a subset of diseases.

Any Disease (Control) The Any Disease model is trained with all images as a binary
model with the “no disease” label (signifying a normal chest X-ray without any disease)
and serves as another control comparison.

Subset-Unlabeled The Subset-Unlabeled model is trained with all images, but with the
labels for unseen diseases removed. In the Subset-Unlabeled model, all image studies are
included in training, while removing the six unseen disease labels.

Subset-Unseen The Subset-Unseen model is trained with images that have either no
disease or have only seen diseases. Image studies with one or more unseen labels are
removed, while also removing the six unseen disease labels.

(a) Detection of “no disease” vs “any dis-
ease” overall, and in three subgroups:
images with only unseen diseases, im-
ages with only seen diseases, images
with both unseen and seen diseases co-
occurring in one image.

(b) Performance of models in detecting
seen diseases overall and for individual
seen diseases: consolidation, pleural ef-
fusion and cardiomegaly. The overall
evaluation strategy considers the aver-
age AUC over all seen diseases.

Figure 2: Performance of multi-label models under various setups.

4. Statistical analysis

To determine statistical significance between 2 models, we use the 95% confidence intervals
of the difference between bootstrap samples. To generate confidence intervals, we used the
non-parametric bootstrap with 1000 bootstrap replicates. Statistically significant differences
between models were established using the non-parametric bootstrap on the mean AUC
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difference on the test set. We calculate p-values from the confidence interval using the
method described in (Altman and Bland, 2011) with a threshold of 0.05 for hypothesis
testing. This method was chosen to evaluate whether 2 models were similar in performance
with respect to their average AUC over the bootstrap sample, and to test statistically
significant performance differences in either direction using the 95% confidence intervals.
We use the Benjamini-Hochberg method to correct for multiple hypothesis testing between
various models.

5. Detection of any disease vs no disease

We evaluate the performance of the multi-label models on detecting the presence of any
disease (vs “no disease”) on a test set containing both seen and unseen diseases. Results
are summarized in Figure 2(a), and Tables 1 and 2.

Subset-Unlabeled vs Controls The Subset-Unlabeled model is not statistically signif-
icantly different from the Any Disease model (mean AUC difference 0.001, [95% CI -0.004,
0.005]), and the All Diseases model (mean AUC difference 0.000, [95% CI -0.003, 0.003]).

Subset-Unseen vs Controls The Subset-Unseen model performs statistically signifi-
cantly lower than the Any Disease model overall (mean AUC difference -0.010, [95% CI
-0.019,-0.004]), but is not statistically significantly different to the Any Disease model
when evaluating examples with only seen diseases (mean AUC difference -0.002, [95%
CI -0.015,0.015]). We find that the Subset-Unseen model performs statistically signifi-
cantly lower than the All Diseases model overall (mean AUC difference -0.010, [95% CI
-0.018, -0.003]), but is not statistically significantly different in evaluating examples with
co-occurring seen and unseen diseases (mean AUC difference -0.004, [95% CI -0.010, 0.000]).

Subset-Unlabeled vs Subset-Unseen The Subset-Unlabeled model performs statisti-
cally significantly higher than the Subset-Unseen model in detecting “no disease” vs “any
disease” in the presence of only unseen diseases (mean AUC difference 0.028 , [95% CI 0.011,
0.047]), and in the presence of co-occurring seen and unseen diseases (mean AUC difference
0.004, [95% CI 0.001, 0.009]). The Subset-Unlabeled model is not statistically significantly
different from the Subset-Unseen model for only seen diseases (mean AUC difference -0.008,
[95% CI -0.019, 0.001]).

6. Detection of seen diseases in the presence of seen and unseen diseases

We evaluate whether a multi-label model trained on seen diseases can successfully detect
seen diseases on a test set containing both seen and unseen diseases. Results are summarized
in Figure 2(b), Table. 3 and 4.

Subset-Unseen vs All Diseases The Subset-Unseen model is not statistically signifi-
cantly different from the All Diseases model overall in detecting seen diseases (mean AUC
difference -0.011, [95% CI -0.020, 0.000]).

Subset-Unlabeled vs All Diseases The Subset-Unlabeled model has statistically sig-
nificantly higher performance when compared to the All Diseases model in detecting seen
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diseases overall (mean AUC difference 0.033, [95% 0.025, 0.042]) and in detecting car-
diomegaly (mean AUC difference 0.032, [95% CI 0.019, 0.046]).

Subset-Unseen vs Subset-Unlabeled The Subset-Unseen model has a statistically sig-
nificantly lower performance when compared to the Subset-Unlabeled model in detecting
seen diseases overall (mean AUC difference -0.044, [95% CI -0.054, -0.033]), pleural effusion
(mean AUC difference -0.014, [95% CI -0.025, -0.004]), and cardiomegaly (mean AUC dif-
ference -0.019, [95% CI -0.033, -0.005]), and is not statistically significantly different from
the Subset-Unlabeled model in detecting consolidation (mean AUC difference -0.023, [95%
CI -0.067, 0.020]).

7. Unseen disease detection

We develop classifiers to detect the presence of any unseen disease given an X-ray image.
Applying the four trained multi-label models to the validation set, we collect the outputs
from the final prediction layer, the penultimate layer, and the visualization map (generated
using the Grad-CAM method (Selvaraju et al., 2017)). The output of the visualization
map using GradCAM is used as a matrix directly in the following steps. The feature
representations are extracted from running the validation set on the trained classification
models. The three sets of outputs are then used to train a random forest classifier and a
logistic regression classifier, with a binary outcome on whether the chest X-ray has an unseen
disease or not, to produce an “unseen score” using unseen disease labels on the validation set
(shown in Figure 1C). Logistic regression classifier is a commonly used standard for binary
classification. Random forest classifiers, compared to logistic regression, are able to create
nonlinear decision boundaries. Unseen scores are the output of the random forest classifier
or the logistic regression classifier, and a numeric number between 0 and 1, signifying how
likely the chest X-ray image has an unseen disease. The performance of these classifiers is
reported on the test set. Results are summarized in Figure 3 and Table 5.

Comparing feature representations Unseen scores derived from the penultimate layer
have the best average performance (AUC 0.873, [95% CI 0.848, 0.897]), followed by those
from the final prediction layer (AUC 0.860, [95% CI 0.833, 0.889]) and the visualization
map (AUC 0.851 [95% CI 0.832, 0.879]). The performance of unseen scores derived from
the penultimate layer is statistically significantly higher than those from the final prediction
layer (mean AUC difference 0.013 [95% CI 0.009, 0.017]), which is higher than those from
the visualization map (mean AUC difference 0.009 [95% CI 0.007, 0.011]).

Comparing classifiers Over all of the representations and the multi-label models, the
random forest classifier has a high average performance of AUC 0.862 [95% CI 0.837, 0.892],
but this is not statistically significantly higher than the performance of the logistic regression
classifier (mean AUC difference 0.002 [95% CI 0.000, 0.003]).

Comparing multi-label models Using the random forest classifier trained on the penul-
timate layer from the four multi-label models, the unseen score derived from the Any Disease
model has the best performance (mean AUC 0.879, [95% CI 0.849, 0.901]) at predicting the
presence of unseen disease, followed by the unseen score from the All Diseases model (mean
AUC 0.875, [95% CI 0.850, 0.899]). The performance of the unseen score from the Any
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Diseases model is statistically significantly higher than that of the unseen score derived
from the All Diseases model (mean AUC difference 0.004, [95% CI 0.003, 0.006]). The
unseen scores derived from the Subset-Unlabeled and the Subset-Unseen models have the
lowest performance among the unseen scores of the four models (AUC 0.874, [95% CI 0.846,
0.897]) and (AUC 0.870, [95% CI 0.842, 0.894]) respectively. Finally, the performance of the
unseen scores derived from the Subset-Unlabeled model is statistically significantly higher
than that of the Subset-Unseen model (mean AUC difference 0.005, [95% CI 0.003, 0.007]).

Figure 3: Performance on the task of unseen disease detection using unseen scores. Unseen
scores were outputted by random forest classifiers trained using three different
feature representations to detect the presence of unseen disease(s): the final pre-
diction layer, penultimate layer and visualization map of the trained multi-label
classifiers.

8. Limitations

There are three main limitations of our study. First, the dataset has a limited number of
diseases, with six unseen diseases in this study. Ideally, a wider variety of unseen diseases
would be evaluated to minimize the impact of disease correlations on performance evalua-
tion. Moreover, the ability to expand towards more diseases while maintaining performance
is important for a useful model in the actual clinical setting. Second, our study is limited
to an internal validation set without an external test set including different unseen diseases.
Third, our study did not explore training strategies for multi-label models that could mit-
igate the performance drop with the All Diseases model compared to the Seen-Unlabeled
model.
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9. Discussion

In this study, we evaluate the performance of deep learning models in the presence of diseases
not labeled for or present during training.

Can models detect seen diseases in the presence of unseen diseases? Our results
show that the Subset-Unlabeled model, which is trained with unseen disease examples but
not unseen disease labels, and the Subset-Unseen model, trained without unseen disease ex-
amples or labels, are able to detect “any disease” vs “no disease” in images with co-occurring
unseen and seen diseases. However, their performance decreases when facing images with
only unseen diseases (Figure 2(a)). These results show that in a real-world clinical setting,
deep learning models may succeed in identifying “no disease” vs “any disease” when an
unseen disease co-occurs with a seen disease, but may likely falsely report “no disease” if
an unseen disease appears alone. Such mistake can result in delays in correct diagnosis
and treatment, and therefore can be life-threatening in some medical conditions (Baiu and
Spain, 2019). This result re-emphasizes the necessity for unseen disease detection to avoid
misclassification of unseen diseases as “no disease.”

Our results also show that the Subset-Unlabeled model and the Subset-Unseen model are
able to detect seen diseases, even in the presence of unseen diseases, at a level comparable to
the All Diseases model. We find that the Subset-Unlabeled model performs better than the
All Diseases model, which may be because of the multi-task nature of the problem, where the
optimization landscape may cause detrimental gradient interference between the different
tasks and impede learning (Yu et al., 2020). We find that the Subset-Unlabeled model has a
statistically significantly higher performance compared to the Subset-Unseen model, likely
because the Subset-Unlabeled model is exposed to additional training examples.

Can unseen diseases be detected without explicit training? On unseen disease
detection, we conduct an initial exploration of unseen disease detection methods, borrow-
ing philosophy from few shot learning, while focusing on evaluating feature representations
extracted from classification models. We find that the unseen scores from the Subset-
Unlabeled model has higher performance than those from the Subset-Unseen model, likely
because the Subset-Unlabeled model learns representations of the unlabeled diseases during
training. We find that unseen scores from the penultimate layer are the best for unseen dis-
ease detection, followed by the final layer and the visualization map. A possible explanation
is that the penultimate layer contains information representing the unseen diseases, whereas
the final prediction layer discards this information to reduce training loss. We find that the
visualization map is outperformed by both the penultimate and the final prediction layer,
perhaps because some diseases in our dataset, including lung lesion, pneumothorax, frac-
ture, atelectasis, can occur in different locations in the chest X-ray than the seen diseases.
Overall, our results demonstrate that using feature representations of multi-label models
trained on diseases form suitable baselines for unseen disease detection. Exploration of the
optimal model for training the unseen disease classifiers using the feature representations
evaluated in this work would be an important future research direction.
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Appendix A. Supporting Tables

Overall Only Unseen Diseases Only Seen Diseases Co-occurring
Seen and

Unseen Diseases
All Diseases 0.980 (0.966,0.990) 0.957 (0.922,0.982) 0.962 (0.932,0.984) 0.999 (0.996,1.000)
Any Disease 0.982 (0.971,0.992) 0.961 (0.932,0.983) 0.967 (0.939,0.988) 0.999 (0.997,1.000)
Subset-Unlabeled 0.983 (0.972,0.993) 0.957 (0.921,0.983) 0.974 (0.952,0.991) 0.999 (0.997,1.000)
Subset-Unseen 0.975 (0.959,0.988) 0.937 (0.891,0.971) 0.968 (0.941,0.987) 0.997 (0.991,0.999)

Table 1: Performance in detecting “no disease” vs “any disease” overall and by each sub-
group [mean area under curve (AUC), (95% confidence interval)].

Overall Only Unseen Diseases Only Seen Diseases Co-occurring
Seen and

Unseen Diseases
Any Diseases -0.001 (-0.007,0.004) [p: 0.791] -0.004 (-0.018,0.007) [p: 0.583] 0.000 (-0.011,0.010) [p: 1.0] 0.000 (-0.001,0.002) [p: 1.0]
Subset-Unlabeled 0.000 (-0.003, 0.003) [p: 1.000] -0.007 (-0.017,0.000) [p: 0.124] 0.006 (-0.006,0.017) [p: 0.396] 0.000 (-0.001,0.001) [p: 1.000]
Subset-Unseen -0.010 (-0.018, -0.003) [p: 0.006] -0.035 (-0.059,-0.016) [p: 0.002] -0.001 (-0.015,0.012) [p: 0.961] -0.004 (-0.010,0.000) [p: 0.149]

Table 2: Differences in performance in detecting “no disease” vs “any disease” overall and
by each subgroup, compared to the All Diseases model [mean area under curve
(AUC), (95% confidence interval)] and p-values with α ≤ 0.05.

Overall Consolidation Pleural Effusion Cardiomegaly
All Diseases 0.851 (0.828,0.871) 0.910 (0.870,0.948) 0.956 (0.938,0.971) 0.863 (0.829,0.894)
Subset-Unlabeled 0.888 (0.868,0.906) 0.914 (0.872,0.948) 0.963 (0.948,0.978) 0.909 (0.882,0.935)
Subset-Unseen 0.861 (0.839,0.881) 0.909 (0.863,0.947) 0.958 (0.942,0.974) 0.886 (0.856,0.913)

Table 3: Performance in detecting seen diseases overall and by each disease [mean area
under curve (AUC), (95% confidence interval)].

Overall Consolidation Pleural Effusion Cardiomegaly
Subset-Unlabeled 0.033 (0.025, 0.042) [p: 1.662e-13] -0.003 (-0.030,0.022) [p: 0.776] 0.005 (-0.003, 0.015) [p: 0.307] 0.032 (0.019, 0.046) [p: 2.520e-06]
Subset-Unseen -0.011 (-0.020, 0.000) [p: 0.839] -0.027 (-0.069,0.021) [p: 0.352] -0.009 (-0.019, 0.002) [p: 0.104] 0.012 (-0.001, 0.025) [p: 0.076]

Table 4: Differences in performance in detecting “no disease” vs “any disease” overall and
by each subgroup, compared to the All Diseases model [mean area under curve
(AUC), (95% confidence interval)] and p-values with α ≤ 0.05.
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All Diseases Any Disease Subset-Unlabeled Subset-Unseen
Final Prediction layer

Logistic Regression 0.863 (0.841,0.898) 0.871 (0.845,0.897) 0.850 (0.822,0.878) 0.848 (0.822,0.877)
Random Forest 0.868 (0.839,0.897) 0.875 (0.848,0.899) 0.853 (0.828,0.880) 0.851 (0.823,0.879)
Penultimate Layer

Logistic Regression 0.874 (0.848,0.899) 0.875 (0.847,0.899) 0.872 (0.845,0.898) 0.870 (0.843,0.895)
Random Forest 0.875 (0.850,0.899) 0.879 (0.849,0.901) 0.874 (0.846,0.897) 0.870 (0.842,0.894)
Visualization Map

Logistic Regression 0.850 (0.823,0.879) 0.856 (0.828,0.882) 0.844 (0.816,0.871) 0.843 (0.813,0.871)
Random Forest 0.858 (0.826,0.883) 0.867 (0.841,0.873) 0.850 (0.820,0.878) 0.843 (0.815,0.873)

Table 5: Performance in detecting unseen diseases [mean area under curve (AUC), (95%
confidence interval)]. We used three different representations to predict the pres-
ence of unseen disease(s): the final prediction layers, penultimate layers and visu-
alization maps from the trained classifiers. For each representation, we trained a
logistic regression model and a random forest model.

Appendix B. Supplementary Information

B.1. Model Training

During training, the uncertain label is treated as a different class, resulting in a 3-class clas-
sifier for each label (negative, uncertain, positive). We use DenseNet121 for all experiments
(Huang et al., 2017). Images are fed into the network with size 320 × 320 pixels. We use
the Adam optimizer with default β-parameters of β1 = 0.9, β2 = 0.999 and a fixed learning
rate 1 × 10−4 (Kingma and Ba, 2014). Batches are sampled using a fixed batch size of 16
images. We train for 3 epochs, saving checkpoints every 4800 iterations. Model training
and inference code is written using PyTorch 1.5 on a Python 3.6.5 environment and run on
2 Nvidia GTX 1070 GPUs.

B.2. Forming Ensembles for Evaluation

For evaluating the performance of the multi-label models, we formed an ensemble of each
model by running the model three times with different random initializations. Each run
produced 10 top checkpoints. We created an ensemble of the 30 generated checkpoints on
the validation set by computing the mean of the output probabilities over the 30 checkpoints
for each task.

B.3. Visualizations of feature representations

To demonstrate the effectiveness of feature representations of multi-label models as inputs
to unseen classifiers, we plot the 2D t-SNE (Van der Maaten and Hinton, 2008) clusters in
Figure 4 of the feature representations for each multi-label model. The t-SNE was run using
a perplexity of 30 with 1000 iterations and a learning rate of 200. The clusters are color
coded with the disease subset label from the validation set (seen/unseen) that we describe
in Section 3.1.
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Figure 4: t-SNE plots of feature representations of each multi-label model
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