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Abstract

The excessive deposition of misfolded proteins such as amyloid-β (Aβ) protein is an aging
event underlying several neurodegenerative diseases. Mounting evidence shows that the
spreading of neuropathological burden has a strong association to the white matter tracts
in the brain which can be measured using diffusion-weighted imaging and tractography
technologies. Most of the previous studies analyze the dynamic progression of amyloid us-
ing cross-sectional data which is not robust to the heterogeneous Aβ dynamics across the
population. In this regard, we propose a graph neural network-based learning framework
to capture the disease-related dynamics by tracking the spreading of amyloid across brain
networks from the subject-specific longitudinal PET images. To learn from limited (2 – 3
timestamps) and noisy longitudinal data, we restrict the space of amyloid propagation pat-
terns to a latent heat diffusion model which is constrained by the anatomical connectivity
of the brain. Our experiments show that restricting the dynamics to be a heat diffusion
mechanism helps to train a robust deep neural network for predicting future time points
and classifying Alzheimer’s disease brain.

Keywords: Heat Diffusion, Florbetapir PET, Structural Brain Network, Alzheimer’s Dis-
ease, Graph Neural Network, Graph Embedding, Graph u-net, Amyloid Progression Pat-
tern, Amyloid-β Pathology.

1. Introduction

Accumulation of amyloid-β (Aβ) peptide into extracellular plaques is known to be a central
event in Alzheimer’s disease brain (Lue et al., 1999; Palop and Mucke, 2010; Jack et al.,
2013b; Fan et al., 2018; Canter et al., 2017). An increasing number of studies (Seeley et al.,
2009; Jonkman et al., 2020) suggest that amyloid deposition expands into areas that receive
neuronal projections from other brain regions already exhibiting Aβ, spreading between
interconnected neurons through large-scale networks. Advancement in Aβ-PET imaging
enables us to quantify the spatial distribution of amyloid in the brains of living humans,
allowing for the study of disease progression before symptoms manifest (Villemagne et al.,
2018). Raj et al. (2012) proposes a network diffusion model to characterize this progression
pattern as a diffusive mechanism mediated by the brain’s connectivity network which finds
characteristic sub-modules in Alzheimer’s (AD) brain. However, their approach doesn’t
consider misfolded protein (MP) burdens such as amyloid or tau. In this regard, Vogel
et al. (2020) proposes an epidemic spreading model based on anatomical connectivity of the
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brain to explain the observed MP burdens in healthy and diseased (AD) brains. Both of
these approaches show the importance of the large-scale brain network in modeling disease
progression based on MP such as Aβ. However, these approaches use cross-sectional data
which is not sufficient to uncover the true dynamics of amyloid because of the subject-wise
heterogeneity across the population. Although the authors of the epidemic spreading model
reconstruct the MP burdens in a subject-specific manner, they have to tune their model for
each individual during test time which might lead to overfitting and potentially distort the
true dynamics.

We propose Diffusion u-net : a graph u-net (Gao and Ji, 2019) based architecture that
uses longitudinal data to learn the disease dynamics in a subject-wise manner. However,
the complex mechanics of Aβ through brain networks is difficult to learn from a dataset
that is noisy and has limited timestamps per subject (< 3 on average). We tackle this
problem by constraining our model to learn a latent heat diffusion process that explains the
neurodegenerative progression by the intercellular transfer of Aβ. We assume the observed
longitudinal amyloid distributions are future instances of the heat diffusion mechanism
constrained by the structural brain network. This way our model learns in a subset of
possible disease processes which makes it possible to infer patterns from limited temporal
data. Moreover, while previous approaches assume a predefined set of epicenter brain
regions (For example, Vogel et al. (2020) fit their model using the left and right entorhinal
cortex as the epicenters) from where Aβ spreads to other brain areas, we show our model can
find these epicenters from higher-order dynamics of Aβ deposition. Extensive experimental
results show that our model is quite effective in learning a robust embedding from only a few
time point data and outperforms more complex models in terms of future Aβ prediction,
Alzheimer’s classification, and disease epicenter estimation.

Figure 1: (a) Our proposed model Diffusion u-net consists of two neural networks —
graph u-net and β-net to estimate future Aβ depositions using Equation 4, (b)
Cluster u-net learns group specific dynamics using an addition classifier to clas-
sify sex (Male/Female) based on ρs,0, and, (c) Adaptive u-net learns separate

group specific representation ρMs,0 and ρFs,0 using a multi-task learning paradigm.
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2. Method and Materials

2.1. Dataset

Our dataset consists of longitudinal amyloid data processed from 1312 subjects from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) from five different diagnosis group — Normal Con-
trol (CN), Significant Memory Concern (SMC), Early Mild Cognitive Impairment (EMCI),
Late Mild Cognitive Impairment (LMCI), and, Alzheimer’s Disease (AD). with 316, 157,
357, 260, and, 222 subjects respectively. Each of the subjects has PET images at 1-6 time
points (2.3 on average) with a 6 - 30 months gap between consecutive time points. The
PET scans are first registered to T1-weighted MR images and then standardized uptake
values (SUV) are computed for each voxel. Region-specific SUV values are computed by
partitioning the cortical surface into 148 regions by using Destrieux atlas in FreeSurfer (De-
strieux et al., 2012) and computing the average SUV for all the voxels of that brain region.
The ratio of the SUV values (SUVR) is computed using the SUV of the cerebellum as the
reference. We then normalize the SUVR based on the batch-wise min-max normalization
approach. We compute the structural connectivity matrices from dMRI data of 103 sub-
jects using FSL’s probtrackx (Behrens et al., 2007) (two-fiber model, 10000 tracks per seed)
to obtain 148×148 connectivity matrices. We use the average white matter connectivity
networks from the CN group in our experiments which is more robust to spurious noises in
our data compared to subject-wise networks.

2.2. Method

Let Φs = [Φs,0, · · · ,Φs,Ts ] be a matrix for the subject s where each column Φs,t = [φvs,t]
represent the observed longitudinal Aβ values for the brain region v at different time-
points t and Ts is the number of observations of s. We consider Φs,t as a graph signal on
the structural brain network G(V, E) which is an undirected weighted graph with v ∈ V
corresponding to the region of interests (ROI) from destriux parcellation (Destrieux et al.,
2012) and eij ∈ E corresponding to the edge that connects two ROIs i and j with weight
wij proportional to the number of white matter fibers between i and j. Let ρs = dΦs

dt =
[ρs,0, · · · ,ρs,Ts ] be the net amyloid generation rate at each ROI which characterizes the
dynamics of the disease progression within the brain. ρs exhibits a non-linear dynamics
due to inter-regional transfer of amyloid between two regions connected by white matter
pathways. We model this dynamics by assuming that ρs follows the heat diffusion equation
in Equation 1 which is in accordance with the prion-like hypothesis in neurodegenerative
diseases (Palop and Mucke, 2010; Frost and Diamond, 2010).

dρs
dt

= −βLρs (1)

Here, β is a scalar which controls speed of the amyloid progression through the structural
network and L is the graph laplacian operator with,

Lij =


∑

j′ wij′ , if i = j

−wij , if i 6= j and i adjacent to j

0, otherwise

(2)
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Prediction of future Aβ, Φ′s: To estimate the future amyloid depositions Φ′s,t at time
t, we first compute ρs,t from a learned ρs,0 using the heat diffusion equation (Equation 1)
and aggregate ρs,t over time using Equation 3.

Φ′s,t =

∫ t

0
ρs,τdτ (3)

Equation 1 has a closed form solution which is, ρs,t = e−βLtρs,0 = Ue−βΛtUT ρs,0. Here
U = [u1, · · · , u|V|] and Λ = diag (λ1, · · · , λ|V|) come from eigendecomposition of L =

UΛUT . Replacing ρs,t on Equation 3 and doing some simplification we get our longitudinal
estimate:

Φ′s,t =

|V|∑
i=1

1

βλi
(1− e−βλit)uTi ρs,0ui (4)

Equation 4 has two unknown variables — β and ρs,0. We train Diffusion u-net which
consists of the following two neural network models to estimate those variables from baseline
Aβ values Φs,0.

Graph u-net: We train a graph u-net model which takes Φs,0 as inputs and predicts
it’s derivative ρs,0. The u-net architecture has a depth of 4 with graph convolution layers
of 64 units. The pooling layers in u-net select the top 50% of the ROIs based on learned
ranking.

β-net: The inter-regional amyloid transfer speed β can be affected by several risk factors
of Alzheimer’s disease (Raffaitin et al., 2009; Solfrizzi et al., 2010; Campbell et al., 2013)
such as 1. age — amyloid progression slows down over time towards a plateau (Villemagne
et al., 2013), 2. sex — interaction between tau and amyloid is stronger in women resulting
in a higher risk of developing symptoms of the serious brain disease (Buckley et al., 2019),
apolipoprotein E (APOE) ε4 allele — Aβ deposition rate is higher with APOE-ε4 carriers
(Kanekiyo et al., 2014), and education level — people with a lower level of education
are known to be less resistant against Alzheimer’s (Ngandu et al., 2007). In this regard,
we train a multilayer perceptron with 2 hidden layers of 256 units to predict β from the
aforementioned risk factors which account for the heterogeneous dynamics of Aβ across the
population.

Finally, we propose two more models (Figure 1(b)) which account for the heterogeneity
between female and male groups in the population by learning sex-specific representations
ρFs,0 and ρMs,0 respectively. The two models are —

Cluster u-net: Here we aim to cluster the embedding ρs,0 based on the sex informa-
tion(Male/Female). We train a multilayer perceptron (3 hidden layers with 256 units each)
to classify ρs,0 based on sex. In this way, the u-net learns an embedding that is informative
of the group. The u-net and the classifier are then jointly trained to reconstruct Φ′s.

Adaptive u-net: We then took a different approach based on the multi-task learning
paradigm which learns an adaptive embedding for each group. Here we consider the male
and female group as a separate task and learn separate embeddings (ρM,0,ρF,0 respectively)
for them. To do this, we use our graph u-net as a base architecture and fork two different
branches for each of the groups. These branches consist of a multilayer perceptron with 1
hidden layer of 64 units which are trained using the data from the corresponding groups.
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Training: With ρs,0 from graph u-net and β from β-net, we estimate the future amyloid
depositions, Φ′s,0, · · · ,Φ′s,t using equation 4. We then jointly train both of these neural
networks by minimizing the following loss function:

Lrecon =
∑
s∈S

(
∑
v∈V

Ts∑
t=0

(φ′vs,t − φvs,t)2 + (I + L)−1ρs0) (5)

The first term is the mean-squared error between Φ′s and Φs. The second term is a
regularization term on ρs,0 (Huang et al., 2015) which is used to stabilize the training
during the initial epochs by enforcing the model to learn embedding with lower entropy,
i.e., a higher imbalance between neighboring regions.

2.3. Experimental Setup

We evaluate our method by doing a series of experiments on three different tasks — recon-
struction, classification, and estimation of Aβ epicenters.

2.3.1. Reconstruction

We compare the accuracy of the reconstructed Aβ values from our model with the following
models:

Stationary model: We assume the Aβ values are constant, i.e, there no change in
amyloid deposition over time.

Linear model: Here we assume a linear progression of amyloid without any diffusion
through the structural brain network. This is equivalent to assuming constant ρs,t in Equa-
tion 3, i.e., ρs,t = ρs,0 = ms which results in Φ′s,t = mst + Φs,0. We consider two models
in this regard — Linear-shared where ms represents the shared slope for each ROI for all
the subjects, and Linear-subject where we learn subject-specific ms from Φs,0 as a linear
combination, i.e., ms = WΦs,0. Here W is a |V|×|V| weight matrix which is learned using
stochastic gradient descent.

GRU: Here we learned the non-linear dynamics from a gated recurrent unit (GRU)
(Cho et al., 2014) based architecture instead of our heat diffusion equation. We use the
same graph u-net based architecture as ours to learn a hidden embedding ρs,t for each time
point t and then feed them to a GRU to predict the future amyloid depositions.

2.3.2. Classification

We show the effectiveness of our predicted Φ′s by a series of classification experiments. We
train 5 different classifiers which classify between CN and AD group based on Φ′s from
Adaptive u-net. We compare the classification result by training all of these models on the
ground truth Aβ deposition Φs. The models are:

v1: This is a simple random forest classifier trained using only the baseline Aβ deposi-
tions (Φs,0 and Φ′s,0).

v2: This model is a graph convolution based classifier (GCNClassifier) with 2 graph
convolutional blocks with size 64 (Kipf and Welling, 2017) followed by a multilayer percep-
tron with 3 hidden layers of size 256. This model is trained using the baseline Aβ depositions
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(Φs,0 and Φ′s,0) to minimize the cross-entropy loss between predicted and ground-truth di-
agnosis label.

v3: Unlike v2, in this model we use the longitudinal data (Φs and Φ′s) to predict the
diagnosis label (CN/AD). First, we learn an embedding from the longitudinal data using a
recurrent neural network with 2 stacked gated recurrent units (GRU) with hidden unit size
148 and then feed this embedding through our GCNClassifier.

v4: In this version, instead of using a GRU, we utilize the longitudinal data by taking
the minimum (Φ′min

s ) and maximum (Φ′max
s ) Aβ values across all the time points for each

brain region and feed them to the GCNClassifier (Min-Max Classifier). The input Φ′mnx
s

to the model is the concatenation of the minimum and maximum values, i.e., Φ′mnx
s =

[Φ′min
s ,Φ′max

s ].
v5: In all the previous models, the input of the classifier Φ′s,0 comes from the pretrained

Adaptive u-net. In this model, we first pretrain Adaptive u-net with data from all the
diagnosis groups and then jointly train this Adaptive u-net and v4 for only CN and AD
group. We minimize the sum of reconstruction loss from Equation 5 and cross-entropy loss
for joint training.

2.3.3. Epicenter estimation

Aβ deposition starts at certain epicenters in the Alzheimer’s brain from where it spreads to
neighbouring brain regions. It is known that Aβ load increases almost in a linear fashion
until it plateaus exhibiting non-linear dynamics (Jack et al., 2013a; Villemagne et al., 2013).

This means the epicenters should exhibit higher order dynamics (Φ1
s =

dΦs,0

dt , Φ2
s =

dΦ1
s,0

dt
etc.) compared to other brain regions. In this experiment, we use these higher order
dynamics to find the epicenters from where the Aβ spreads to the brain. Our diffusion u-net
model learns to estimate a graph signal by reconstructing Φs,0 from ρs,0 using Equation 3

which enforces ρs,0 =
dΦs,0

dt . This means we can treat our model as a differential operator of a

graph signal. We recursively compute higher order dynamics using Φl+1
s = dΦl

s
dt where Φ0

s =

Φs,0 by feeding Φl
s to our model until Φl

s = 0. We then define a diffusion distance measure
ds = [dvs ] for each brain region v by simply counting how many higher order derivatives v
has and normalizing it using min-max normalization approach across all subjects. Higher
dvs value will indicate higher likelihood of being an epicenter.

3. Results

3.1. Reconstruction

Table 1 shows the r2 values between predicted Aβ values Φ′s,t and ground truth Aβ values
Φs,t across all the ROIs for all our reconstruction models. Our experiments show that the
stationary model can explain 79% of the variance of the longitudinal Aβ data. Linear-shared
and Linear-subject models improve the performance by 2% and 7% respectively which shows
the effectiveness of learning subject-specific dynamics. Surprisingly, the non-linear GRU
model performs worse (r2 = 0.84) compared to the Linear-subject model (r2 = 0.86). We
hypothesize that it’s challenging for complex neural networks to learn the hidden dynamics
due to the low signal-to-noise ratio in our dataset. In this regard, our model Diffusion u-net
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replaces the GRU with a much simpler non-linear process (Equation 4) which outperforms
the aforementioned models with r2 = 0.88. Moreover, our results in Table 1 show that the
performance of all the models is significantly worse for the female subjects in Alzheimer’s
group. Cluster u-net and Adaptive u-net attempt to solve this problem by learning sex-
specific representation. While Cluster u-net doesn’t show any improvement, Adaptive u-net
significantly improves the performance for both males and females across all the diagnosis
groups with 2% improvement (r2 = 0.90) overall and 5% improvement (r2 = 0.56) for the
female-AD group compared to our original Diffusion u-net.

Table 1: r2 values across different diagnosis groups

Model Sex CN SMC EMCI LMCI AD Overall

Stationary
Female 0.74 0.61 0.73 0.60 0.51

0.79
Male 0.83 0.55 0.79 0.77 0.82

Linear-
shared

Female 0.76 0.64 0.72 0.61 0.52
0.81

Male 0.84 0.62 0.80 0.78 0.82

Linear-
subject

Female 0.82 0.71 0.85 0.72 0.52
0.86

Male 0.86 0.70 0.84 0.82 0.86

GRU
Female 0.79 0.65 0.83 0.60 0.21

0.84
Male 0.86 0.54 0.84 0.73 0.85

Diffusion
u-net

Female 0.84 0.73 0.88 0.74 0.52
0.88

Male 0.88 0.78 0.88 0.82 0.88

Cluster
u-net

Female 0.84 0.74 0.88 0.75 0.53
0.88

Male 0.87 0.79 0.87 0.81 0.89

Adaptive
u-net

Female 0.87 0.77 0.91 0.78 0.56
0.90

Male 0.92 0.89 0.93 0.86 0.96

3.2. Classification

The results of the classification experiments are listed in Table 2. From the results we
find that v1 and v2 don’t show any significant difference in performance between Φs and
Φ′s. In v3, the performance for both Φs and Φ′

s are again similar and they outperform
our previous models v1 and v2. This shows that our model doesn’t lose any temporal
information pertinent for diagnosis. Interestingly, in v4 we see a significant difference in
performance where Φ′s beats Φs by more than 2% in terms of ROC value. Minimum and
maximum Aβ values are highly sensitive to spurious noises in data. We maintain that
our proposed method reduces such noises by restricting the dynamics in a heat diffusion
mechanism. However, jointly training the Adaptive u-net with classifier in v5, doesn’t show
any performance boost compared to v4.

3.3. Epicenter estimation

The group-wise average of ds for different diagnosis groups (CN, AD, etc.) shows that
the amyloid starts at the temporal lobe (Anterior transverse collateral sulcus, Temporal
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Table 2: Micro ROC values for CN/AD classification

Model Model Description Input ROC

v1
Random Forest
Classifier

Φs,0 0.8855
Φ′s,0 0.8857

v2 GCNClassifier
Φs,0 0.8853
Φ′s,0 0.8872

v3
GRU +
GCNClassifier

Φs 0.9304
Φ′s 0.9288

v4
Min-Max +
GCNClassifier

Φmnx
s 0.9061

Φ′mnxs 0.9241

v5 Adaptive u-net + v4 Φ′s 0.9289

pole) and then spreads through limbic lobe (Subcallosal area), and, frontal lobe (Medial
orbital sulcus, Orbital sulci) and finally expand into the parietal lobe and the occipital
lobe(Figure 2). These results align with the current findings of cortical AD progression
(Smith et al., 2002; Dickerson et al., 2008; Wu et al., 2021).

Figure 2: (a) The dynamics of diffusion distance (ds) of the right hemisphere from EMCI
to AD group are shown where darker color indicates higher diffusion distances.
(b) Average diffusion distances for the right hemisphere of the LMCI group are
organized by the lobes (marked with different color bars) of the brain. The peak
distances in the temporal lobe indicate epicenter brain regions from where Aβ
spreads to other brain regions.

4. Conclusion

Understanding the progression dynamics of Alzheimer’s disease is a major factor in the
preclinical stages of the disease. In this paper, we propose a graph neural network-based
model to learn these dynamics from longitudinal amyloid data in a subject-wise manner.
By constraining these dynamics to a heat diffusion process, our model can learn robust
dynamics from a few time point data which shows effectiveness in future amyloid prediction,
Alzheimer’s disease classification, and, disease epicenter prediction.
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Appendix A. Implementation Details

This section provides the details of the neural network architectures in this work.

A.1. Diffusion u-net

We have two different neural networks in our model: 1. Graph u-net (Figure 3), and,
2. β-net. The graph u-net has a depth of 4. The graph convolution layers inside the
u-net have 64 units and the graph pooling layer selects top 50% of the nodes based on
the learned ranking. The β-net is a multilayer perceptron with two hidden layers each
having 256 units. For training we split the dataset into training (70%), validation (15%),
and, evaluation (15%) folds and jointly train both of these networks for 700 epochs with a
learning rate = 1e-6, dropout rate = 0.01, activation = Exponential linear unit (ELU) and
batch size = 32.

Figure 3: Graph u-net architecture

A.2. GCNClassifier

The GCNClassifier has two convolutional blocks from (Kipf and Welling, 2017) each having
64 units. The output of these convolutional blocks is then concatenated and fed into a
multilayer perceptron with 3 hidden layers each having 256 units. The classifier is trained
for 500 epochs using the hyper-parameters: learning rate = 1e-5, dropout rate = 0.01,
activation = Exponential linear unit (ELU) and batch size = 32.
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Figure 4: Graph convolution based classifier
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