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Abstract

A Hybrid Optimization Between Iterative and network fine-Tuning (HOBIT) reconstruc-
tion method is proposed to solve quantitative susceptibility mapping (QSM) inverse prob-
lem in MRI. In HOBIT, a convolutional neural network (CNN) is first trained on healthy
subjects’ data with gold standard labels. Domain adaptation to patients’ data with hem-
orrhagic lesions is then deployed by minimizing fidelity loss on the patient training dataset.
During test time, a fidelity loss is imposed on each patient test case, where alternat-
ing direction method of multiplier (ADMM) is used to split the time consuming fidelity
imposed network update into iterative reconstruction and network update subproblems
alternatively in ADMM, and only a subnet of the pre-trained CNN is updated during
the process. Compared to the method FINE where such fidelity imposing strategy was
initially proposed to solve QSM, HOBIT achieved both performance gain of reconstruc-
tion accuracy and vast reduction of computational time. Our code is available at https:

//github.com/Jinwei1209/HOBIT.

Keywords: convolutional neural network, alternating direction method of multiplier, do-
main adaptation, quantitative susceptibility mapping

1. Introduction

Quantitative susceptibility mapping (QSM) is an imaging contrast in magnetic resonance
imaging (MRI) to quantify tissue magnetic susceptibility values from estimated local tissue
field data (Kressler et al., 2009). QSM provides biomarkers for tissues with iron, calcium
and gadolinium (Wang and Liu, 2015) concentrations which can be used for clinical diag-
nosis, such as multiple sclerosis (Langkammer et al., 2013), intracranial calcifications and
hemorrhages (Chen et al., 2014). QSM is computed by inverting the following forward
process:

b = FHDFχ+ n (1)
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where b is the estimated local tissue field from magnetic resonance phase imaging, χ is
the tissue susceptibility to compute, F is the Fourier transform, D is the dipole kernel in
k-space and n is the additive noise (assuming i.i.d. Gaussian for each voxel). With single
orientation sampling, the dipole inversion problem from local field b to susceptibility χ is
ill-posed since the zero-cone in the k-space dipole kernel produces dipole-incompatible field,
which results in streaking and shadow artifacts of susceptibility (Kee et al., 2017).

Various methods have been proposed to resolve the ill-posedness of dipole inversion.
Direct method truncated k-space division (TKD) modified the dipole kernel near the zero-
cone to add dipole-incompatible field components (Shmueli et al., 2009). Iterative method
morphology enabled dipole inversion (MEDI) introduced a weighted total variation reg-
ularization to suppress the streaking artifacts (Liu et al., 2012). Oversampling method
calculation of susceptibility through multiple orientation sampling (COSMOS) eliminated
the zero-cone of the dipole kernel by a combination of multi-oriented fields (Liu et al., 2009);
therefore, COSMOS has been regarded as the gold standard susceptibility map. With the
advance of convolutional neural network (CNN), deep learning (DL) has been introduced
in QSM. A first deep learning method QSMnet built a 3D U-Net for field-to-susceptibility
mapping using COSMOS as the training dataset, and was reported to porform better than
TKD and MEDI (Yoon et al., 2018). Another deep learning method DeepQSM trained
U-Net with synthetic field-susceptibility pairs (Bollmann et al., 2019). Since then, more
architectures have been proposed based on the backbone U-Net, such as QSMGAN (Chen
et al., 2020), xQSM (Gao et al., 2020) and folded attention U-Net (Zhang et al., 2020a) to
name a few.

Compared to conventional methods, DL QSM methods usually achieve fast and accurate
reconstructions on test dataset, but when tested on the cases with pathologies not encoun-
tered during training, such as intracranial calcifications and hemorrhages with extreme
susceptibility values, generalization error may be enlarged in those regions. The generaliza-
tion error could show up as severely under-estimated susceptibility values of lesions in DL
QSM. To overcome such limitation, several methods were proposed to improve the domain
adaptation ability of DL QSM. QSMnet+ augmented the training dataset to a wider range
of susceptibility in order to generalize the network better (Jung et al., 2020). Probabilistic
dipole inversion (PDI) adapted the pre-trained network to different patient datasets using
variational inference (Zhang et al., 2020d,c). Fidelity imposed network edit (FINE) de-
ployed the fidelity loss of dipole inversion on each test case so that the generalization error
of unseen lesions could be reduced (Zhang et al., 2020b).

As one of effective domain adaptation methods for DL QSM, FINE combines advanta-
geous robustness of iterative methods and implicit regularization of DL methods. Despite
such merit, significantly increased computational time is needed for FINE, which hinders
its practical usage. In the work, we analyze existing issues of FINE and attempt to resolve
them all with a newly proposed method derived from FINE: Hybrid Optimization Between
Iterative and network fine-Tuning (HOBIT) reconstruction for fast QSM. We deployed ab-
lation study of HOBIT and compared it with MEDI, QSMnet, QSMnet+, FINE and PDI
on both in vivo and simulated hemorrhagic datasets. Superior reconstruction performance
was achieved in HOBIT and reconstruction speed was vastly accelerated compared to FINE.
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2. Method

Figure 1: Network architecture in HOBIT. fθ was the dipole inversion network 3D U-Net
and gψ was a slimmer network with five convolutional layers. fθ has a single input
b while gψ has b and f ′θs output χ0 concatenating together as its input to produce
the final output χ1. Only gψ is adapted for each test case after training.

2.1. Issues in FINE

In FINE (Zhang et al., 2020b), a 3D U-Net (Ronneberger et al., 2015) was pre-trained on
the multi-orientation dataset of healthy subjects with COSMOS (Liu et al., 2009) as labels
to do supervised learning. When tested on each patient data without label, FINE adapted
the pre-trained weights by minimizing the following fidelity loss in an unsupervised fashion:

‖W (FHDFχ− b)‖22 (2)

until the relative change of fidelity loss between two consecutive epochs fell below 5× e−3,
where W is the square root of the inverse of the noise covariance matrix. The vanilla FINE
above has three major issues:

• When performing FINE in subject, pathology-related domain adaptation information
is not inherited when performing FINE in other subjects that have a similar pathology.

• The whole network update of FINE is redundant, as lots of weights seldom change
during network update (Fig. 2 in FINE (Zhang et al., 2020b)).

• Network update leads to slow update of the output susceptibility, requiring hundreds
of epochs to converge.

In the next section, we attempt to tackle the three issues above using the proposed method.

2.2. HOBIT

In HOBIT, we design the network architecture as shown in Fig. 1, where a first dipole
inversion network 3D U-Net fθ maps local field input b to susceptibility output χ0, then a
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slimmer network gψ consisting of five convolutional layers maps {χ0, b} to the final suscep-
tibility output χ1. COSMOS dataset of healthy subjects are used to pre-train fθ and gψ
with the following loss function:

min
θ,ψ

NC∑
i=1

‖χ(i)
0 − χ

(i)
T ‖1 + ‖χ(i)

1 − χ
(i)
T ‖1, (3)

where χ
(i)
T is the i-th label/target from a total of NC COSMOS data points, χ

(i)
0 and χ

(i)
1

are predictions of fθ and gψ. After pre-training, the following steps are deployed to resolve
the three major issues of FINE described in section 2.1 point-by-point:

• Domain adaptation to the patient dataset is accomplished by fine-tuning the COSMOS
pre-trained network with a fidelity loss function on the patient training dataset:

min
θ,ψ

NP∑
i=1

‖W (i)(FHDFχ
(i)
0 − b

(i))‖22 + ‖W (i)(FHDFχ
(i)
1 − b

(i))‖22, (4)

where W (i) and b(i) are the i-th noise weighting matrix and input local field from a
total of NP patient data points. Then during test per case, network refinement starts
from those domain adapted weights.

• After domain adaptation using Eq. 4, fθ is fixed and only gψ is refined for each test
case in the patient test dataset.

• Rewrite minimization of network reparametrized fidelity loss 1
2‖W (FHDFgψ(χ0, b)−

b)‖22 as:

min
ψ,χ

α

2
‖W (FHDFχ− b)‖22 +

1− α
2
‖W (FHDFgψ(χ0, b)− b)‖22

s.t. χ = gψ(χ0, b),

(5)

where 0 ≤ α ≤ 1. Convert the constrained optimization problem in Eq. 5 as the
augmented Lagrangian format:

min
ψ,χ

α

2
‖W (FHDFχ− b)‖22 +

1− α
2
‖W (FHDFgψ(χ0, b)− b)‖22

+
ρ

2
‖χ− gψ(χ0, b) + µ‖22 −

ρ

2
‖µ‖22,

(6)

where ρ is the penalty parameter and µ is the dual variable. Eq. 6 is then solved using
alternating direction method of multiplier (ADMM) (Boyd et al., 2011) iteratively in
three subproblems:

χn+1 = arg min
χ

α

2
‖W (FHDFχ− b)‖22 +

ρ

2
‖χ− gψn(χ0, b) + µn‖22, (7)

ψn+1 = arg min
ψ

1− α
2
‖W (FHDFgψ(χ0, b)− b)‖22 +

ρ

2
‖χn+1 − gψ(χ0, b) + µn‖22, (8)

µn+1 = µn + χn+1 − gψ(n+1)(χ0, b), (9)
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where subproblem Eq. 7 is the network output regularized least square problem which
can be approximated with a few conjugate gradient (CG) iterations, subproblem Eq. 8
is the L2 regularized nonlinear least square problem with network reparametrization,
which can be solved using first order adaptive gradient descent algorithm such as
Adam (Kingma and Ba, 2014).

3. Experiments

3.1. Data acquisition and preprocessing

Multi-echo 3D gradient echo (MGRE) sequence was performed on 7 healthy subjects using
a 3T GE scanner with 5 brain orientations, 256 × 256 × 48 acquisition matrix and 1 ×
1 × 3 mm3 voxel size. After data acquisition, raw field data of each scan was estimated
via non-linear least square fitting of multi-echo phase data using Levenberg–Marquardt
algorithm (Liu et al., 2013). Phase wraps of raw field data were unwrapped using graph-
cut based spatial phase unwrapping algorithm (Dong et al., 2014). Background field of
raw field data was then removed using projection onto dipole fields (Liu et al., 2011) to
obtain local tissue field data b as network’s input. COSMOS gold standard as pre-training
label was computed by aggregating multi-orientated local fields to do dipole inversion (Liu
et al., 2009). MGRE sequence was also performed on 7 intracerebral hemorrhagic (ICH)
patients with single orientation and same scanning parameters as COSMOS dataset. Image
processing procedures as above were deployed on ICH dataset, except for the COSMOS
reconstruction step. Data were acquired following an IRB approved protocol.

For COSMOS pre-training in Eq. 3, data of 5/2 subjects (25/10 brain volumes) were
used as training/validation datasets with ±15◦ in-plane rotations for augmentation. Brain
volumes were divided into 3D patches with patch size 64 × 64 × 32 and extraction step
21 × 21 × 11, generating 12074/5748 patches for training/validation. For ICH patient
domain adaptation in Eq. 4, whole brain volume data from 4/1 subjects were used as
training/validation datasets. Data from the remaining 2 patients were used as in vivo ICH
test dataset. Simulated local fields were also obtained by applying forward model Eq. 1
to FINE reconstructed QSMs of ICH validation and test datasets, where 5 simulated lo-
cal fields with different samples of Gaussian noise n were generated on each ICH patient,
yielding 5/10 volumes as simulated ICH validation/test datasets. The purpose of these sim-
ulated ICH datasets was to provide ground truth (GT) for both ablation study on HOBIT
and quantitative comparison among different methods. Peak signal-to-noise ratio (PSNR),
root-mean-square error (RMSE), structural similarity index measure (SSIM) (Wang et al.,
2004), high-frequency error norm (HFEN) (Ravishankar and Bresler, 2010) and shadow
artifact quantification metric of ICH (RICH , defined in Appendix) (Liu et al., 2017) were
used as quantitative metrics to evaluate reconstruction accuracy.

3.2. Implementation details and ablation study

For network training, fθ and gψ were first trained with loss Eq. 3 on the COSMOS dataset
using Adam optimizer (Kingma and Ba, 2014) (learning rate 10−3, 60 epochs). fθ and gψ
were then adapted to the ICH patient data with loss Eq. 4 on the in vivo ICH dataset
using Adam optimizer (learning rate 10−3, 200 epochs). In HOBIT, the number of outer

857



HOBIT

Figure 2: (a): Reconstruction results of two test cases in ablation study ([-0.15, 0.15] ppm).
DLL2 and HOBIT (α = 1.0, ρ = 60) suffered from shadow artifacts surround-
ing the hemorrhages (red arrows). (b): Fidelity costs of HOBIT with α = 0.5
(monotonically decreasing) and α = 1.0 (divergent) per ADMM outer loop.

loops in ADMM was fixed as 5, the relative change threshold of CG in Eq. 7 was 10−10

with a maximum of 100 iterations, and the number of gradient descent in Eq. 8 was 4 using
Adam optimizer (learning rate 10−3). To determine the optimal α and ρ in Eq. 7 and 8, we
applied a grid search of α ([0, 1], interval 0.1) and ρ ([10, 100], interval 10) on the simulated
ICH validation dataset, yielding the optimal parameters α = 0.5 and ρ = 30.

For ablation study, we compared HOBIT against a few methods below on the simulated
ICH test dataset. These methods included direct inference of domain adapted gψ without
and with input local field concatenation (denoted as gψ(χ0 as input) and gψ((χ0, b) as input)),
iterative reconstruction with gψ as L2 regularization (µn = 0 in Eq. 7, α = 1, ρ = 60, de-
noted as DLL2), FINE on domain adapted gψ using fidelity loss Eq. 2 (denoted as FINE
on gψ), and HOBIT with α = 1.0 and ρ = 60. Reconstruction results of two test cases are
shown in Fig. 2a. Quantitative metrics are shown in Table 1. All the methods resolved the
under-estimation issue inside the hemorrhagic lesions. Compared to HOBIT with optimal
α = 0.5 and ρ = 30, DLL2 and HOBIT with α = 1.0 and ρ = 60 suffered from shadow
artifacts surrounding the hemorrhagic lesions (red arrows in Fig. 2a), while gψ and FINE
on gψ suffered from sub-optimal reconstruction accuracy. Fidelity costs Eq. 2 of HOBITs
with two sets of parameters after each outer loop in ADMM are shown in Fig. 2b. HOBIT
with optimal α = 0.5 and ρ = 30 had monotonically decreasing fidelity cost. In contrast,
HOBIT with α = 1.0 and ρ = 60 suffered from divergence issue of fidelity cost.

3.3. Simulated ICH

HOBIT was compared with other dipole inversion methods on the simulated ICH test
dataset. Reconstruction results of two test cases are shown in Fig. 3. MEDI reconstructed
piecewise constant QSMs which visually looked smooth. QSMnet had under-estimation
issue inside the hemorrhages, which was reduced in QSMnet+. Both QSMnet and QSMnet+
had shadow artifact issue surrounding the hemorrhages (red arrow in Fig. 3). FINE, PDI-
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Table 1: Average quantitative metrics of 10 test simulated brains reconstructed by different
methods in ablation study. Overall, HOBIT (α = 0.5, ρ = 30) performed the best.

pSNR (dB ↑) RMSE (% ↓) SSIM (↑) HFEN (% ↓) RICH (% ↓)
gψ (χ0 as input) 31.63 68.28 0.9733 65.19 40.18

gψ ((χ0, b) as input) 33.65 57.29 0.9765 55.51 24.80
DLL2 37.91 35.04 0.9854 30.84 27.66

FINE on gψ 36.64 40.80 0.9711 41.89 9.81
HOBIT (α=1.0, ρ=60) 35.88 44.20 0.9834 45.78 33.57
HOBIT (α=0.5, ρ=30) 38.29 33.98 0.9834 32.12 7.99

Figure 3: Reconstruction results of two simulated test cases ([-0.15, 0.15] ppm). MEDI
visually looked smooth. Under-estimation inside the hemorrhages in QSMnet
was reduced in QSMnet+. QSMnet and QSMnet+ had shadow artifact issue
surrounding the hemorrhages (red arrows). FINE, PDI-VI and HOBIT produced
qualitatively better QSMs than the other methods.

VI and HOBIT produced qualitatively better QSMs than the other methods. Quantitative
metrics and computational time of each method are shown in Table 2. HOBIT had the
overall best accuracy among all the methods. In terms of computational time per subject,
QSMnet, QSMnet+ and PDI achieved the fastest GPU time of less than 1s, while HOBIT
was the fastest iterative method compared to MEDI (×3.1) and FINE (×31.6).

3.4. In vivo ICH

HOBIT was also compared with other methods on the in vivo ICH test dataset. In this
dataset, no ground truth was provided as label; therefore, QSMs were compared qualita-
tively. Reconstruction results are shown in Fig. 4. Similar to the simulation results in
section 3.3, MEDI produced smooth QSMs on the in vivo test data too. QSMnet suffered
from under-estimation inside the hemorrhagic lesions while QSMnet+ suffered from severe
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Table 2: Average quantitative metrics of 10 simulated ICH test cases. HOBIT achieved the
overall best performance and over ×30 faster than FINE on GPU.

pSNR (dB ↑) RMSE (% ↓) SSIM (↑) HFEN (% ↓) RICH (% ↓) time (s)

MEDI 33.89 56.62 0.9842 45.94 15.79 37.9
QSMnet 30.85 78.96 0.9599 69.14 75.85 0.6

QSMnet+ 32.88 62.59 0.9794 62.47 50.75 0.6
FINE 36.60 41.17 0.9786 37.24 20.78 392.3

PDI-VI 36.72 40.39 0.9690 41.87 18.26 0.6
HOBIT 38.29 33.98 0.9834 32.12 7.99 12.4

Figure 4: Reconstruction results of two in vivo test cases ([-0.15, 0.15] ppm). MEDI pro-
duced smooth QSMs. QSMnet suffered from under-estimation inside the hemor-
rhagic lesions while QSMnet+ suffered from severe shadow artifacts surrounding
the lesions (red arrows). FINE, PDI-VI and HOBIT had visually similar QSMs.

shadow artifacts surrounding the lesions (red arrows in Fig. 4). FINE, PDI-VI and HOBIT
had visually similar QSMs including hemorrhages without under-estimation and shadow
artifacts and overall susceptibilities without over-smoothness.

4. Conclusion

Motivated by analyzing and solving existing issues of FINE, we proposed HOBIT as a novel
hybrid iterative and DL reconstruction method for fast QSM. Ablation study showed the
necessity of each building block/step in HOBIT for performance improvement. Experiments
on both in vivo and simulated ICH test datasets showed that HOBIT achieved over 30
times acceleration on computational time than FINE. Meanwhile, superior reconstruction
accuracy was obtained compared to the other methods including FINE.
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Appendix

In this appendix we show the definition of RICH based on (Liu et al., 2017) to quantify
shadow artifact surrounding ICH:

RICH =
(
SD(χrecon|Mnon−ICH)− SD(χGT |Mnon−ICH)

)
/SD(χGT |Mnon−ICH),

where (χ|Mnon−ICH) denotes the susceptibilities in the non-ICH region defined as 5-mm-
wide layer surrounding each ICH, χGT denotes ground truth susceptibility, χrecon denotes
reconstructed susceptibility, and SD(·) denotes standard deviation.
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