

Predicting COVID-19 Lung Infiltrate Progression on Chest Radiographs Using Spatio-temporal LSTM based Encoder-Decoder Network

Amit Gupta⁴, Chao Chen², Joel Saltz², Prateek Prasanna² ²Department of Biomedical Informatics, Stony Brook University ⁴University Hospitals Cleveland Medical Center

Aishik Konwer¹, Joseph Bae², Gagandeep Singh³, Rishabh Gattu³, Syed Ali³, Jeremy Green³, Tej Phatak³, ¹Department of Computer Science, Stony Brook University ³Department of Radiology, Newark Beth Israel Medical Center

Clinical motivation

Chest radiographs of the chest (a-d) from a single patient over four days (a) Ground glass opacities (b) Slightly increased opacities.

(c) Extensive confluent consolidations.

(d) Similar findings as seen on day 1

 Currently no imaging models can predict the severity of disease at a later time point, based on the trajectory in the first few days of treatment.

 Radiographic analysis on sequential CXR can provide insights on treatment response.

Technical Motivation

- Existing ML based COVID-19 studies primarily utilize single timepoint radiographic scans for outcome prediction. -CNN features
- -Radiomic features
- LSTMs have been used in disease progression modelling to capture evolution of severity using sequential medical imaging data (ophthalmic disease [1], lung cancer)

GOAL: To predict chest x ray severity scores at a future timpeoint

Our encoder framework learns in 2 stages:

- LSTM-Spatial aggregates spatial information from different lung locations
- LSTM-Temporal aggregate information from CXRs at different timepoints

Step 1: 256 x 256 patches extracted from each lung zone.

- Oversampling handles severity grade imbalance.
- Neighbor patches enhance contextual information.

Step 4: Context vector and EOS are inputs to first timestep of **Step 2:** CNN features from each patch fed as input to decoder. Softmax applied to classify its output into severity each timestep of *LSTM-Spatial* scores.

	Results																				
Methods		I	left Lu	ing Up	per			Left Lung Middle Left Lung Lower													
	Acc(%)	Pre 0 1 2			<i>Rec</i> 0 1 2			Acc(%)	Pre 0 1 2			Rec 0 1 2			Acc(%)	Pre 0 1 2			<i>Rec</i> 0 1 2		
Baseline-1	60 ± 4.76	0.55	0.66	0.52	0.51	0.68	0.52	64 ± 5.47	0.5	0.71	0.59	0.47	0.74	0.56	58 ± 4.89	0.5	0.62	0.56	0.47	0.71	0.48
Baseline-2	57 ± 4.63	0.48	0.67	0.48	0.41	0.64	0.60	61 ± 5.80	0.48	0.7	0.56	0.52	0.64	0.60	55 ± 4.64	0.5	0.60	0.50	0.52	0.70	0.43
Variant-1	66 ± 4.33	0.57	0.67	0.63	0.56	0.73	0.48	69 ± 4.68	0.45	0.72	0.51	0.65	0.74	0.56	64 ± 4.87	0.39	0.66	0.74	0.45	0.74	0.70
Variant-2	68 ± 3.51	0.53	0.74	0.41	0.67	0.78	0.63	70 ± 2.89	0.43	0.68	0.55	0.47	0.69	0.77	61 ± 4.16	0.35	0.57	0.64	0.48	0.81	0.64
Our Approach	71 ±3.58	0.69	0.75	0.64	0.62	0.77	0.69	73 ±2.56	0.72	0.77	0.6	0.69	0.83	0.52	69 ±3.94	0.61	0.73	0.67	0.52	0.73	0.72
Methods		Right Lung Middle							Right Lung Lower												
	Acc(%) Pre 0 1 2					<i>Rec</i> 0 1 2		Acc(%)	cc(%) Pre 0 1 2			Rec 0 1 2			Acc(%)	Pre 0 1 2		<i>Rec</i> 0 1 2			

Mathada			Right Lung Lower																		
Methods	Acc(%)	Pre 0 1 2		<i>Rec</i> 0 1 2		Acc(%)	Pre 0 1 2			Rec 0 1 2			Acc(%)	Pre 0 1 2			<i>Rec</i> 0 1 2				
Baseline-1	64 ± 3.23	0.56	0.72	0.52	0.6	0.71	0.5	55 ± 4.08	0.45	0.60	0.51	0.40	0.63	0.51	58 ± 3.91	0.54	0.62	0.54	0.42	0.59	0.61
Baseline-2	67 ± 3.38	0.63	0.72	0.6	0.7	0.65	0.66	52 ± 3.29	0.47	0.60	0.39	0.45	0.63	0.37	56 ± 4.36	0.4	0.65	0.51	0.42	0.63	0.51
Variant-1	72 ± 3.09	0.65	0.69	0.52	0.67	0.73	0.62	66 ± 2.62	0.42	0.56	0.72	0.56	0.62	0.80	63 ± 3.85	0.50	0.62	0.57	0.60	0.61	0.52
Variant-2	70 ± 2.81	0.84	0.62	0.67	0.70	0.64	0.57	62 ± 1.76	0.59	0.78	0.63	0.57	0.71	0.45	64 ± 3.27	0.77	0.43	0.66	0.40	0.66	0.66
Our Approach	76 ±2.33	0.68	0.84	0.66	0.73	0.80	0.66	67 ±2.72	0.59	0.71	0.65	0.59	0.75	0.58	65 ±3.73	0.5	0.67	0.67	0.5	0.65	0.69

Quantitative results for the six Left and Right lung zones

Baseline 1: Fine-tuned VGG16 [3] features **Dataset**: 657 temporal AP CXRs from 100 COVID-19 patients, **Baseline 2**: Radiomic approach where the duration between the CXRs are variable. Severity Variant 1: LSTM-Spatial was removed. scores (0,1,2) assigned by radiologists to each lung zone. Variant 2: Oversampling and Neighbor patch removed. Our approach **outperforms** both variants and state-of-the-art baselines in all six lung zones.

Conclusion

1) A novel multi-stage LSTM framework that learns both spatial and temporal information from sequential CXRs. 2) Our model can potentially inform duration and timing of clinical treatments (e.g. proning).

Methodology

Step 3: 512 dimension global feature vector from LSTM-Spatial input to each timestep of *LSTM-Temporal*, which eventually generates the context vector.

References:

1) Jiang et al.: Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network. *PloS one* 13.7 (2018): e0201142.

2) Wang et al.: Predictive modeling of the progression of Alzheimer's disease with recurrent neural networks. *Scientific reports* 8.1 (2018): 1-12. 3) Simonyan et al.: Very deep convolutional networks for large-scale image recognition.

