
Clinical motivation

● Currently no imaging models can predict the severity of disease at 
a later time point, based on the trajectory in the first few days of 
treatment.

● Radiographic analysis on sequential CXR can provide insights on 
treatment response.

Technical Motivation
● Existing ML based COVID-19 studies primarily utilize single 

timepoint radiographic scans for outcome prediction.

-CNN features

-Radiomic features

● LSTMs have been used in disease progression modelling to capture 
evolution of severity using sequential medical imaging data 
(ophthalmic disease [1], lung cancer)

 

Our encoder framework learns in 2 stages:

● LSTM-Spatial aggregates spatial information from different lung 
locations 

● LSTM-Temporal aggregate information from CXRs at different 
timepoints
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Chest radiographs of the chest (a-d) from a single patient over four days
(a) Ground glass opacities 
(b) Slightly increased opacities.
(c) Extensive confluent consolidations.
(d) Similar findings as seen on day 1

Example of a typical LSTM approach [2]

Step 1: 256 x 256 patches extracted from each lung zone. 
● Oversampling handles severity grade imbalance.
● Neighbor patches enhance contextual information.

Step 2: CNN features from each patch fed as input to 
each timestep of  LSTM-Spatial 

Step 3: 512 dimension global feature vector from LSTM-Spatial 
input to each timestep of LSTM-Temporal, which eventually 
generates the context vector. 

Step 4: Context vector and EOS are inputs to first timestep of 
decoder. Softmax applied to classify its output into severity 
scores.

Dataset: 657 temporal AP CXRs from 100 COVID-19 patients, 
where the duration between the CXRs are variable.Severity 
scores (0,1,2) assigned by radiologists to each lung zone.
Our approach outperforms both variants and state-of-the-art 
baselines in all six lung zones.

1)  A  novel multi-stage LSTM framework that learns both 
spatial and temporal information from sequential CXRs.
2) Our model can potentially inform duration and timing 
of clinical treatments (e.g. proning).

Baseline 1: Fine-tuned VGG16 [3] features
Baseline 2: Radiomic approach
Variant 1: LSTM-Spatial was removed.
Variant 2: Oversampling and Neighbor patch removed.
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Quantitative results for the six Left and Right lung zones 

Patch-CNN-LSTM block (enlarged)

A
Conclusion

GOAL: To predict chest x ray severity scores at a future timpeoint 


