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Introduction

Age-related morphological brain changes are different in healthy and
disease affected aging. Biological brain age estimation from magnetic
resonance imaging (MRI) scans is a common way to quantify this
effect whereas an estimated biological brain age significantly older
than the chronological age is an indicator for neurodegenerative
diseases [1]. Several machine learning brain age estimation models
have been recently developed; however, they don’t allow to visualize
age-specific morphological changes on the MRI scans directly. The
aim of this work was to develop a novel deep-learning based
approach to unify biological brain age estimation and age-
conditioned template creation in a single model.
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Material and Methods

Training data:

1918 T1-weighted brain MRI scans of
predominantly healthy adults (1029 males,
1089 females) aged between 21 and 82
years (mean: 51+14) collected in the Study
of Health in Pomerania [2].

Preprocessing:

¢ Affine registration to a common space.
* Patch cropping around the ventricles.

— Reduces the computational time,
resources, and number of datasets needed
to train the model; the aging effects are
highly visible in the ventricles.

Model:

The model use a deterministic
autoencoder that successfully disentangles
the age-related morphological brain
changes from the age-unrelated changes.

The unified model:

* Non-linearly maps the MRI scans to a low dimensional latent space (2) using an autoencoder

(1).

* |solate the age-related component, representing the biological brain age (4) from the low
dimensional latent space representations, using an invertible module (3).

A Gaussian mixture model (5) estimates the distribution of the age-unrelated components.
Synthetic age-unrelated components can be sampled from it.
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reconstructed. The resulting age-specific templates
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used as an independent test set. show natural age-related changes and subject-

specific features remain unchanged. the-art methods for
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Invertible NN [4] 5.05 6.95 changes on MRI scans.
e These results contribute
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understanding of
Ours 495 6.97 0.780 0.758 ’ . ’ healthy brain aging.
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