=PFL

B MIDL2021 - CHRISTIAN ABBET

Self-Rule to Adapt: Learning Generalized Features from Sparsely-Labeled Data Using Unsupersived Domain
Adaptation for Colorectal Cancer Tissue Phenotyping

Christian Abbet'?, Linda Studer?3, Andreas Fischer®, Heather Dawson?, Inti Zlobec?, Behzad Bozorgtabar?, and Jean-Philippe Thiran?

L LTS5, EPFL, Switzerland

Motivations

Save annotation time for pathologists.

Benefit from the widely available data in the institute to learn
proper features representation.

Use self-supervised learning to perform unsupervised domain
adaptation.

Contributions

We present a new label transferring approach from a partially
labeled source domain to an unlabeled target domain.

® We perform progressive entropy minimization based on
the similarity distribution among the unlabeled target and source
domain samples.

® We show that our method can discover the relevant semantic
information even in the presence of few labeled source samples
and yields a better generalization on target domain.

Proposed Approach

Architecture
The proposed Self-Rule to Adapt (SRA) architecture.

Encoder f P
A —_—
T~T,
‘
" z
/ ¥ Lo + Lorp
[ -1 ----- -
| I
' o[
(sampled from target il BN
or source domain) z | 4
& ~T, -~ Queue Q
Momentum f
Encoder
2 = Input image
#,#' = Transformed images D =D;UD; 3= Queue Q= Q,UQ;
2,7’ = Embeddings D; = Source domain = Source queue Q,
T, = Transformations set D; = Target domain 1 = Target queue Q;

The model optimizes the contribution of the in-domain and the
cross-domain loss term.

Lsra = Linp + LerD
In-domain

Individually optimize the representation of the source and target
sets to create robust sets embedding.
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Cross-domain

The model tries to find good candidates using cosine similarity. Here
is a case of low entropy when matching target to the source domain.
z; € Dy

Similar

Cross-domain p(Zi,qJ') © Dissimilar

similarity

Target

Easy-to-hard

Progressively match samples based on the entropy of similarities.
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Features Alignment
The t-SNE projection comparison with and without SRA.
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WSIs Segementation

Segmentation of whole slide images over multiples classes. We compare the performance of our SRA algorithm to other
baselines. We report the pixel-wise accuracy, the weighted intersection over union, and the pixel-wise Cohen's kappa.
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Section 2 Section 1

Section 3

(a) Original (b) Ground truth (c) Source only (d) OSDA (e) SSDA - Jigsaw  (f) SRA
(Saito et al., 2018b) (Xu et al., 2019)
+ p>0.05; *p < 0.05; **p < 0.001; unpaired t-test with respect to the top result.

Benefits of Easy-to-hard
Effects on similarity distribution and confidence score with and without easy-to-hard learning.
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