# Self-Rule to Adapt: Learning Generalized Features from Sparsely-Labeled Data Using Unsupersived Domain Adaptation for Colorectal Cancer Tissue Phenotyping



Christian Abbet<sup>1,2</sup>, Linda Studer<sup>2,3</sup>, Andreas Fischer<sup>3</sup>, Heather Dawson<sup>2</sup>, Inti Zlobec<sup>2</sup>, Behzad Bozorgtabar<sup>1</sup>, and Jean-Philippe Thiran<sup>1</sup> <sup>1</sup> LTS5, EPFL, Switzerland <sup>2</sup> Institue of Pathology, Bern, Switzerland <sup>3</sup> DIVA Reserch Group, University of Fribourg, Switzerland

# **Motivations**

• Save annotation time for pathologists.

EPFL

- Benefit from the widely available data in the institute to learn proper features representation.
- Use self-supervised learning to perform unsupervised domain adaptation.

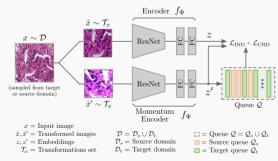
# Contributions

- We present a new label **transferring approach** from a partially labeled source domain to an unlabeled target domain.
- We perform progressive entropy minimization based on the similarity distribution among the unlabeled target and source domain samples.
- We show that our method can discover the **relevant semantic** information even in the presence of few labeled source samples and yields a **better generalization** on target domain.

# Proposed Approach

### Architecture

The proposed Self-Rule to Adapt (SRA) architecture.



The model optimizes the contribution of the in-domain and the cross-domain loss term.

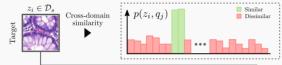
 $\mathcal{L}_{\rm SRA} = \mathcal{L}_{\rm IND} + \mathcal{L}_{\rm CRD}$ 

## In-domain

**Individually** optimize the representation of the source and target sets to create robust sets embedding.

# Cross-domain

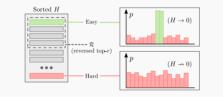
The model tries to find good candidates using cosine similarity. Here is a case of low entropy when matching target to the source domain.





## Easy-to-hard

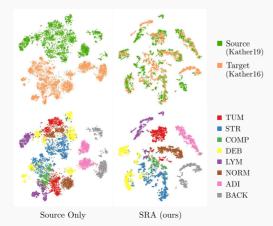
### Progressively match samples based on the entropy of similarities.



# Experiments

## Features Alignment

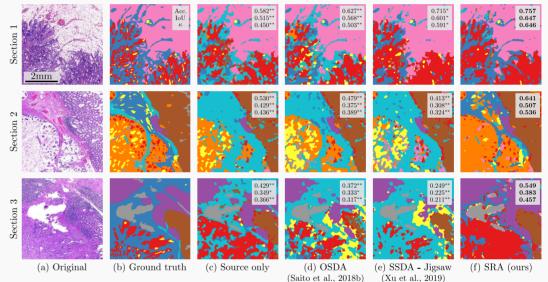
The t-SNE projection comparison with and without SRA.



## **WSIs Segementation**

Segmentation of whole slide images over multiples classes. We compare the performance of our SRA algorithm to other baselines. We report the pixel-wise accuracy, the weighted intersection over union, and the pixel-wise Cohen's kappa.

■ TUM ■ STR – DEB ■ LYM ■ NORM ■ ADI ■ BACK ■ MUS ■ M



<sup>+</sup>  $p \ge 0.05$ ; \*p < 0.05; \*p < 0.001; unpaired t-test with respect to the top result.

## Benefits of Easy-to-hard

## Effects on similarity distribution and confidence score with and without easy-to-hard learning.

