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Introduction

Quantitative susceptibility mapping (QSM) requires solving a

challenging ill-posed field-to-source inversion problem. Recently, deep

learning techniques[1,2,3,4,5] have been proposed and demonstrated

impressive performance. Due to the inherent non-existent ground-

truth QSM references, these techniques used either COSMOS maps or

synthetic data for network training. The model-based learning uQSM

without the need of QSM labels fails to perform well. Here, we

proposed uQSM+ to (1) apply model-based learning for QSM, (2) use

field perturbation to improve network robustness.

Figure 1. Network architecture

Method

üUse field perturbation to introduce regularization in model-based

learning for QSM

üLoss function: data consistency loss + total variation loss +

consistency regularization loss
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Figure 2. Comparison of QSM results on a multi-orientation QSM data 

Data

ü9 multi-orientation datasets acquired with 5 head orientations and a

3D single-echo GRE scan with isotropic voxel size 1.0x1.0x1.0mm3.

ü2019 QSM reconstruction challenge stage2.

Figure 4. Comparison of QSM on a 2019 QSM reconstruction challenge dataset

Results
ü Improved quantitative metrics score.

ü Greatly suppress the streaking artifacts and shading

artifacts shown in Fig2 and Fig4

ü But underestimate the susceptibility values at calcification

and vessels, shown in Fig3

Table 1. Quantitative evaluation on multi-orientation datasets

Discussion & Conclusion
We apply input field perturbation to improve model-based

learning for QSM. It greatly suppresses the artifacts in the

QSM. However, it has the problem that it underestimates

the susceptibility values at calcification and vessels which

have high susceptibility values and low signal-to-noise.
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Figure 3. Comparison of QSM applying data augmentation on 

a 2019 QSM reconstruction challenge dataset


