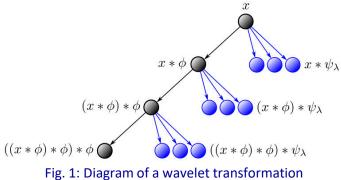
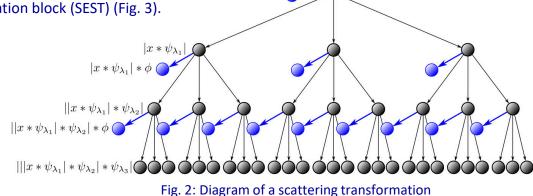


Attention via Scattering Transforms for Segmentation of Small Intravascular Ultrasound Data Sets

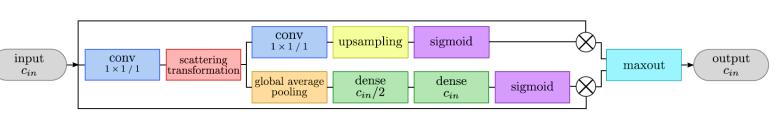

Lennart Bargsten¹, Katharina A. Riedl², Tobias Wissel³, Fabian J. Brunner², Klaus Schaefers⁴, Michael Grass³, Stefan Blankenberg², Moritz Seiffert², Alexander Schlaefer¹

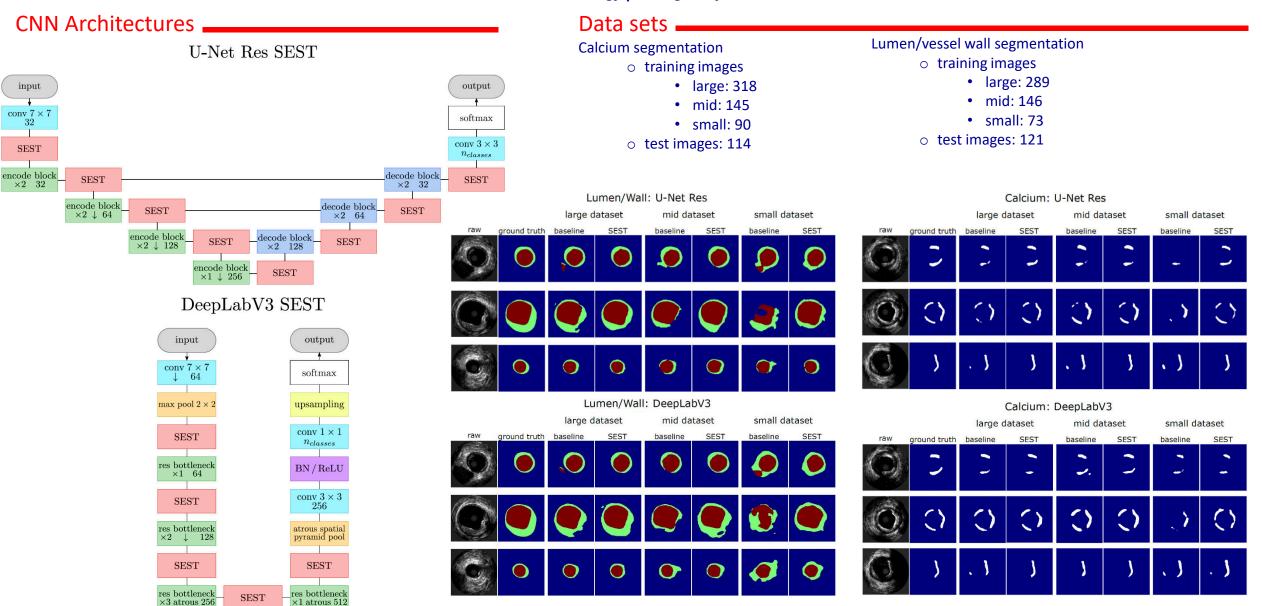

Motivation

- Limited data for CNN training leads to inefficient filters unable to extract meaningful features.
- The scattering transformation, basically a special form of CNN with pre-defined filters, is able to produce meaningful features without learning weights.
- Combining CNNs with scattering transformations could improve segmentation performance when dealing with small amounts of data.
- We investigate this hypothesis using segmentation of intravascular ultrasound images.

Methods

- An ordinary wavelet transformation can be calculated by applying a filter cascade with low-pass filters ϕ and band-pass filters ψ (Fig. 1).
- Scattering transformations also rely on a wavelet basis, but band-pass filters are applied to all intermediate feature maps (Fig. 2).
- Problem: exponential growth of output feature maps with increasing order of transformation.
- Solution: use scattering transformation in a squeeze and excitation block (SEST) (Fig. 3).




Fig. 3: Diagram of the proposed squeeze and excitation block with scattering transformation (SEST) block

Results and Discussion

- Calcium segmentation (Tab. 1): improvements by SEST are statistically significant for all data set sizes.
- Improvements are larger on smaller data sets.
- Largest improvements are 6% (relative) for the Dice coefficient and 21% for the average Hausdorff distance.
- Vessel wall (Tab. 2) and lumen (Tab. 3) segmentation: improvements by SEST are almost only statistically significant for the smallest data sets.
- On small data sets, U-Net Res produces better results for vessel wall and lumen segmentation compared to DeepLabV3.

Tab. 2: Results of vessel wall segmentation.

			Dice coefficient [%]		ave. Hausd. dist. [px]		
model	dset size	method	value	p-value	value	p-value	
U-Net Res	large	wavelet baseline	79.51 ± 0.57 79.29 ± 0.50	0.14	1.85 ± 0.10 2.03 ± 0.11	< 0.01	
	mid	wavelet baseline	76.15 ± 0.61 75.86 ± 0.47	0.08	2.56 ± 0.18 2.69 ± 0.15	0.02	
	small	wavelet baseline	67.05 ± 1.23 66.63 ± 1.39	0.19	$\begin{array}{c} 4.80 \pm 0.44 \\ 5.36 \pm 0.43 \end{array}$	< 0.01	
DeepLabV3	large	wavelet baseline	77.86 ± 0.52 77.78 ± 0.49	0.33	2.16 ± 0.14 2.18 ± 0.08	0.31	
	mid	wavelet baseline	74.44 ± 0.58 73.79 ± 0.72	< 0.01	2.69 ± 0.16 2.85 ± 0.27	0.03	
	small	wavelet baseline	62.20 ± 1.30 60.91 ± 1.37	< 0.01	5.07 ± 0.25 5.80 ± 0.48	< 0.01	

Tab. 1: Results of calcium segmentation.

			Dice coefficient [%]		ave. Hausd. dist. [px]		
model	dset size	method	value	p-value	value	p-value	
U-Net Res	large	wavelet baseline	$\begin{array}{c} 66.94 \pm 0.48 \\ 66.20 \pm 0.90 \end{array}$	< 0.01	7.92 ± 0.60 8.89 ± 1.12	< 0.01	
	mid	wavelet baseline	$\begin{array}{c} 64.74 \pm 0.69 \\ 63.69 \pm 0.96 \end{array}$	< 0.01	$\frac{10.32 \pm 1.06}{11.96 \pm 1.29}$	< 0.01	
	small	wavelet baseline	$\begin{array}{c} 58.62 \pm 1.46 \\ 55.38 \pm 2.99 \end{array}$	< 0.01	$\begin{array}{c} 13.31 \pm 1.20 \\ 16.89 \pm 3.45 \end{array}$	< 0.01	
DeepLabV3	large	wavelet baseline	$\begin{array}{c} 66.57 \pm 0.34 \\ 66.00 \pm 0.42 \end{array}$	< 0.01	8.09 ± 0.48 8.61 ± 0.50	< 0.01	
	mid	wavelet baseline	62.36 ± 0.43 61.38 ± 0.77	< 0.01	11.83 ± 0.68 12.93 ± 0.94	< 0.01	
	small	wavelet baseline	59.71 ± 0.95 55.18 ± 3.86	< 0.01	11.51 ± 0.88 15.30 ± 4.56	< 0.01	

Tab. 3: Results of lumen segmentation.

						-		
ve. Hausd.	dist. [px]				Dice coeffici	ent [%]	ave. Hausd.	dist. [px]
value	p-value	model	dset size	method	value	p-value	value	p-value
$85 \pm 0.10 \\ 03 \pm 0.11$	< 0.01		large	wavelet baseline	90.54 ± 0.36 90.50 ± 0.34	0.39	$\begin{array}{c} 1.40 \pm 0.17 \\ 1.51 \pm 0.17 \end{array}$	0.05
$56 \pm 0.18 \\ 69 \pm 0.15$	0.02	U-Net Res	mid	wavelet baseline	90.12 ± 0.60 90.22 ± 0.49	0.68	$\begin{array}{c} 1.38 \pm 0.19 \\ 1.53 \pm 0.39 \end{array}$	0.09
80 ± 0.44 36 ± 0.43	< 0.01		small	wavelet baseline	86.59 ± 1.07 84.63 ± 0.58	< 0.01	$\begin{array}{c} 2.94 \pm 0.97 \\ 4.25 \pm 0.56 \end{array}$	< 0.01
$16 \pm 0.14 \\ 18 \pm 0.08$	0.31		large	wavelet baseline	90.12 ± 0.41 89.93 ± 0.26	0.07	2.16 ± 0.14 1.57 ± 0.13	0.07
$69 \pm 0.16 \\ 85 \pm 0.27$	0.03	DeepLabV3	mid	wavelet baseline	$\begin{array}{c} 89.81 \pm 0.41 \\ 89.44 \pm 0.46 \end{array}$	0.01	$\begin{array}{c} 1.40 \pm 0.20 \\ 1.58 \pm 0.38 \end{array}$	0.06
$07 \pm 0.25 \\ 80 \pm 0.48$	< 0.01		small	wavelet baseline	$\begin{array}{c} 84.61 \pm 1.06 \\ 83.51 \pm 0.83 \end{array}$	< 0.01	3.05 ± 0.83 3.96 ± 0.86	< 0.01

Conclusion

- Inserting scattering transformations into CNNs via an attention mechanism (SEST) improves segmentation results on small intravascular ultrasound datasets.
- We can therefore conclude that the features extracted by the scattering transformations inside the SEST blocks provide meaningful information.
- The approach works better for segmentation of small structures like calcifications.
- The attention approach with SEST seems to be less effective for larger structures like lumen or vessel wall.
- SEST can be flexibly inserted into any CNN.

Affiliations:

 ¹ Hamburg University of Technology, Institute of Medical Technology and Intelligent Systems, Hamburg, Germany
² Department of Cardiology, University Heart & Vascular Center Hamburg, Hamburg, Germany
³ Philips Research - Hamburg, Germany

⁴ Philips Research - Eindhoven, The Netherlands

This work was partially funded by the European Regional Development Fund (ERDF) and the Free and Hanseatic City of Hamburg in the Hamburgische Investitions- und Förderbank (IFB)-Program PROFI Transfer Plus under grant MALEKA.