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Problem Formulation Contribution

® Novel Bayesian approach for solving
inverse tasks
® Based on deep image prior
® QOptimized prior with Bayesian
optimization
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Figure: Bayesian deep image prior.

Figure: Hallucination.
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Bayesian Deep Learning
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® Surrogate Model, e.g. Gaussian process %
O

® More efficient than, e.g. grid search

Optimization Objective
ELBO(q(0)) = Eo~q log p(D|6) — KL(q(0)||p(0))

N
likelihood regularizer
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Figure: Qualitative results after convergence.

Conclusion

® New Bayesian approach to deep image prior

® No hallucinations
® Qutlook: Tune full KL divergence with BO
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