

A Mean-Field Variational Inference Approach to Deep Image Prior for Inverse Problems in Medical Imaging

Malte Tölle*, Max-Heinrich Laves*, Alexander Schlaefer

4th Medical Imaging with Deep Learning (MIDL)

7th July 2021

Mean-Field Variational Inference Deep Image Prior

Problem Formulation

Figure: Inverse problems.

Figure: Hallucination.

Contribution

- Novel Bayesian approach for solving inverse tasks
- Based on deep image prior
- Optimized prior with Bayesian optimization

Methods & Experiments

Bayesian Deep Learning

- Posterior $p(\theta | D)$ intractable
- Approximate posterior with $q(\theta)$ (Variational Inference)
- Aleatoric and epistemic uncertainty Var[y]

Bayesian Optimization

- Surrogate Model, e.g. Gaussian process
- More efficient than, e.g. grid search

Optimization Objective

$$\text{ELBO}(q(\theta)) = \underbrace{\mathbb{E}_{\theta \sim q} \log p(\mathcal{D}|\theta)}_{\text{likelihood}} - \underbrace{\text{KL}(q(\theta)||p(\theta))}_{\text{regularizer}}$$

Results & Conclusion

DIP SGLD MCDIP

MFVI (ours)

 $\times 10^{3}$

denoising (X-ray)

iteration

super-resolution (MRI)

30

15

30.0

Figure: Qualitative results after convergence.

Conclusion

- New Bayesian approach to deep image prior
- No hallucinations
- Outlook: Tune full KL divergence with BO

