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Problem Definition:

* We cannot feed WSIs to neural nets due to their gigantic size.

* Typical solution is patch extraction:

Patching

—

Input WSl Papillary Thyroid

Carcinoma

* Input: A set of patches.
* OQutput: Primary site and Cancer sub-type.

CNN and Deep Sets for end-to-end WSI representation learning
@ MIDL 2021 Online



Problem Definition

Whole Slide Image (WSI) Representation Learning
e Patch labels are not available

* Training on patches gives us nothing more than patch embeddings.
* Downstream tasks are not straightforward:

* Some proposed solutions:

« WSI classification with patch embeddings: Decision fusion methods LN " HLusc
* WSI (set) search with patch embeddings: Heuristic methods

LUAD

v GBM

Brain " LGG

* There is a hierarchy between labels.

Hierarchical Labels

We need WSI (set) embedding- Our model should process set data i.e., be
permutation invariant and acknowledge dependency between WSI labels.
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CNN-Deep Sets
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layer for testing of WSI

feature vector encoding.

Inputs to site and
diagnosis classification
layers

(sofimax activation)
Primary diagnosis
classification. Size of i-
th layer is dependent on
number of cancer
subtypes in i-th primary
site




CNN-Deep Sets

* Hierarchal multi-label training:
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Experiments: WSI search- Horizontal search

Breast
Prostate
skin

Brain

Head and Neck
Uterus
Thyroid
Ovary
Stomach
Lung
Cervix
Kidney
Esophagus
Adrenal Gland
Colorectal
Pleura
Bladder
Soft Tissue
Liver
Testis

Eye
Pancreas
Thymus
Bile Duct

Table 1: Majority-3 and 5 search accuracy (%) for the horizontal search (primary site
identification) among 604 WSIs for Yottixel and CNN Deep Sets (best results in green).
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Tumor Type Patient #  Yottixel (k=3) CNN-DS (k=3) Yottixel (k=15) CNN-DS (k= 5)
Brain 46 T3 91 73 59
Breast (i 45 T 38 T
Endocrine Tl 61 GG 50 62
(Gastro. G9 a0 75 49 T4
Gynaec. 18 16 a3 0 27
Head /neck 23 17 G9 13 G5
Liver 44 43 i 36 43
Melanocytic 18 16 50 5 38
Mesenchymal 12 B 100 0 23
Prostate/testis 44 4a7 81 43 T
Pulmonary GE 58 91 o4 80
Urinary tract 112 i TG 62 T4
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Experiments: WSI search- Vertical search

Table 2: Majority-3 and -5 search through E-NN for the vertical search among 604 WSIs.
Best Fl-measure values highlighted.

: E;‘ES Fl-measure (in %)
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Histopathology Image Classification

Table 3: CNN-DS evaluation on lung cancer classification via transfer learning.

Algorithm Accuracy (in %)
Coudray et al. (Coudray et al., 2018) 85
Kalra & Adnan et al. (Kalra et al., 2020a) 84
Khosravi et al. (Khosravi et al., 2018) 83
Yu et al. (Yu et al., 2016) 75
CNN-DS (Ours) 86
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Conclusion

* CNN-Deep Sets for end-to-end WSI representation learning.

* New hierarchal multi-label training that acknowledge dependency
between primary site and its corresponding primary diagnosis labels.

e Attractive results in WSI search and classification.



