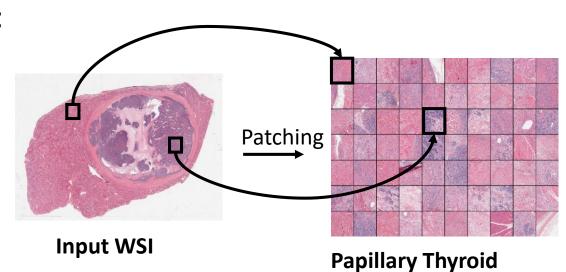


CNN and Deep Sets for End-to-End Whole Slide Image Representation Learning

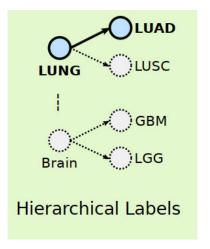
Sobhan Hemati, Shivam Kalra, Cameron Meaney, Morteza Babaie, Ali Ghodsi, Hamid R. Tizhoosh

Presenter - Sobhan Hemati



Problem Definition:

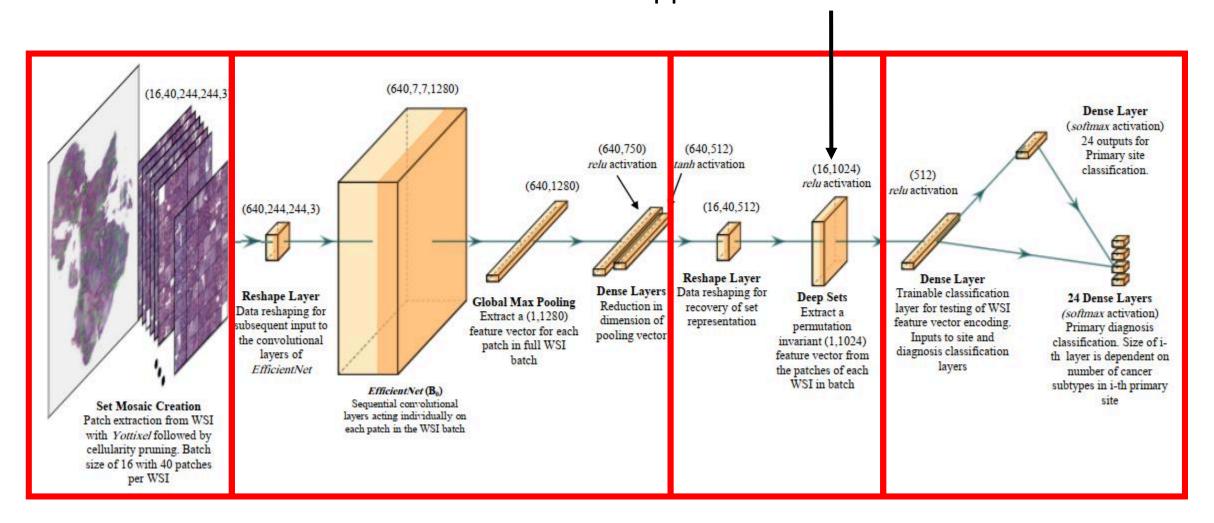
- We cannot feed WSIs to neural nets due to their gigantic size.
- Typical solution is patch extraction:


Carcinoma

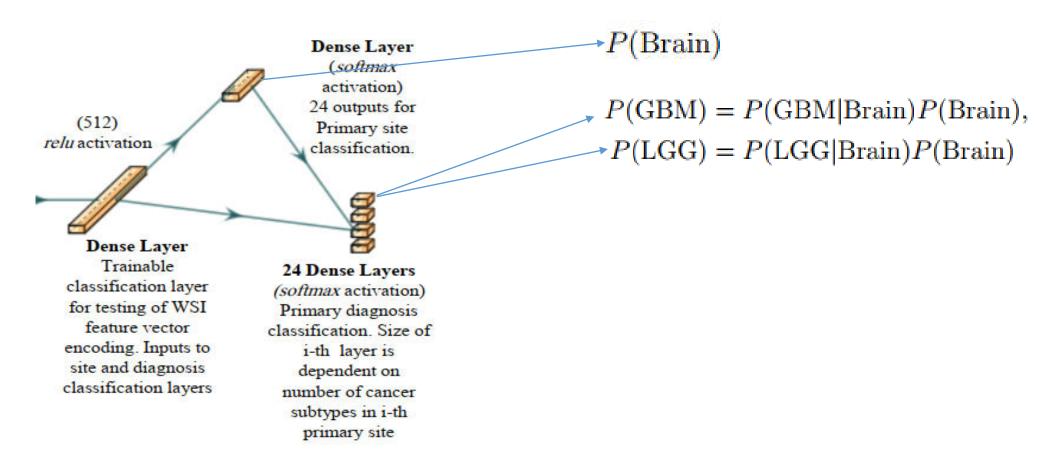
- Input: A set of patches.
- Output: Primary site and Cancer sub-type.

Problem Definition

Whole Slide Image (WSI) Representation Learning


- Patch labels are not available
- Training on patches gives us nothing more than patch embeddings.
- Downstream tasks are not straightforward:
- Some proposed solutions:
 - WSI classification with patch embeddings: Decision fusion methods
 - WSI (set) search with patch embeddings: Heuristic methods
- There is a hierarchy between labels.

We need WSI (set) embedding- Our model should process set data i.e., be permutation invariant and acknowledge dependency between WSI labels.


CNN-Deep Sets

$ho(pool(\{\phi(x_1),...,\phi(x_n)\}))$ universal approximator of set functions

CNN-Deep Sets

Hierarchal multi-label training:

Experiments: WSI search- Horizontal search

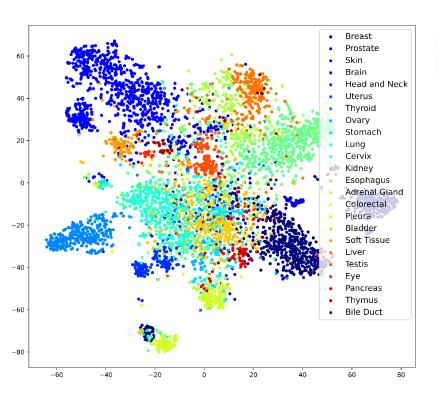
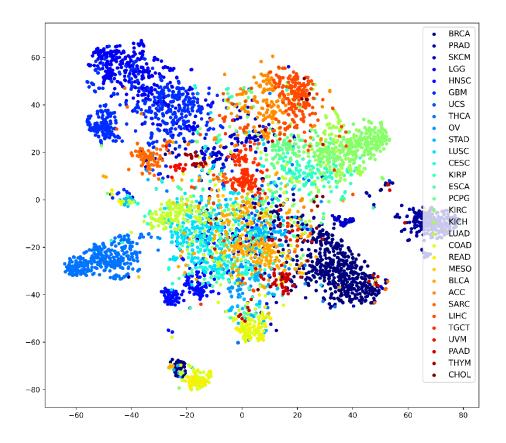



Table 1: Majority-3 and 5 search accuracy (%) for the horizontal search (primary site identification) among 604 WSIs for Yottixel and CNN Deep Sets (best results in green).

			Accuracy (in %)				
Tumor Type	Patient #	Yottixel $(k = 3)$	CNN-DS $(k = 3)$	Yottixel $(k = 5)$	CNN-DS $(k = 5)$		
Brain	46	73	91	73	89		
Breast	77	45	77	38	79		
Endocrine	71	61	66	59	62		
Gastro.	69	50	75	49	74		
Gynaec.	18	16	33	0	27		
Head/neck	23	17	69	13	65		
Liver	44	43	56	36	43		
Melanocytic	18	16	50	5	38		
Mesenchymal	12	8	100	0	83		
Prostate/testis	44	47	81	43	77		
Pulmonary	68	58	91	54	89		
Urinary tract	112	67	76	62	74		

Experiments: WSI search- Vertical search

Table 2: Majority-3 and -5 search through k-NN for the vertical search among 604 WSIs. Best F1-measure values highlighted.

		$n_{ m slides}$	F1-measure (in %)			
Site	Subtype		Yottixel	CNN-DS	Yottixel	CNN-DS
Brain	LGG	23	78	89	75	81
Brain	GBM	23	82	89	83	84
	THCA	50	92	98	91	98
Endocrine	ACC	6	25	28	28	0
	PCPG	15	61	81	61	79
	ESCA	10	12	44	25	55
Gastro.	COAD	27	62	69	54	70
Gastro.	STAD	22	61	64	57	78
	READ	10	30	55	16	0
60.00	UCS	3	75	80	50	50
Gynaeco.	CESC	6	92	66	76	80
	OV	9	80	82	66	82
	CHOL	4	26	0	25	0
Liver, panc.	LIHC	32	82	95	87	95
	PAAD	8	94	94	77	94
Description from the	PRAD	31	98	97	95	96
Prostate/testis	TGCT	13	96	93	86	93
2000	LUAD	30	62	61	62	61
Pulmonary	LUSC	35	69	60	69	62
	MESO	3	0	50	0	0
	BLCA	31	89	95	86	94
TT	KIRC	47	91	87	89	84
Urinary tract	KIRP	25	75	84	79	81
	KICH	9	70	53	66	0

Histopathology Image Classification

Table 3: CNN-DS evaluation on lung cancer classification via transfer learning.

Algorithm	Accuracy (in %)		
Coudray et al. (Coudray et al., 2018)	85		
Kalra & Adnan et al. (Kalra et al., 2020a)	84		
Khosravi et al. (Khosravi et al., 2018)	83		
Yu et al. (Yu et al., 2016)	75		
CNN-DS (Ours)	86		

Conclusion

CNN-Deep Sets for end-to-end WSI representation learning.

 New hierarchal multi-label training that acknowledge dependency between primary site and its corresponding primary diagnosis labels.

Attractive results in WSI search and classification.