

Gifsplanation via Latent Shift: A Simple Autoencoder Approach to Counterfactual Generation for Chest X-rays

Given:		
E(x)D(z) $f(x)$	 Latent Shift Method: Opposite of an adversarial attack. Perturb the input so the classifier reduces its prediction regularized by the decoder. Compute the gradient of the output of the classifier with respect to the latent space. 	

IoU analysis with expert annotations

IoU is generally low, little variation between methods. Seems inconsistent with how method is qualitatively better.

	Dataset	$\mathrm{Model} \rightarrow$	XRV-all		XRV-mimic_ch	
Task		2D Method	AUC	IoU	AUC	IoU
Mass	NIH	grad guided integrated latentshift-max	0.82	$\begin{array}{c} 0.16{\pm}0.14\\ \textbf{0.19{\pm}0.16}\\ 0.13{\pm}0.13\\ 0.14{\pm}0.17\end{array}$	Mo	odel does t predict
Lung Opacity	RSNA	grad guided integrated latentshift-max	0.84	0.21±0.11 0.21±0.12 0.17±0.10 0.20±0.13	0.75	0.13±0.09 0.09±0.07 0.08±0.07 0.15±0.14
Pneumothorax	SIIM-ACR	grad guided integrated latentshift-max	0.78	0.01±0.02 0.03±0.05 0.01±0.02 0.02±0.04	0.67	0.01±0.02 0.02±0.03 0.01±0.01 0.03±0.07

<u>Reader study:</u> Two radiologists evaluated how confident they were in a models predictions.

240 Chest X-ray images Radiologists asked: 50% are false positives "How confident are you in the model's prediction? (1-5)"

True Positives: 0.15 ± 0.95 confidence increase using Latent Shift (p=0.01). False Positives: 0.04 ± 1.06 increase which is not significant (p=0.57)