
Improved 3D Brain Generation with Cycle-Consistent Embedding GAN
Shibo Xing, Harsh Sinha, Seong Jae Hwang, University of Pittsburgh 

Modern generative adversarial networks (GANs) have been enabling the 
realistic generationof full 3D brain images by sampling from a latent space 
prior Z(i.e., random vectors) and mapping it to realistic images in X(e.g., 3D 
MRIs).  To address the ubiquitous mode collapse issue, recent works have 
strongly imposed certain characteristics such as Gaussianness to the prior by 
also explicitly mapping to encoder.  These efforts, however, fail to accurately 
map 3D brain images to the desirable prior, which the generator assumes to 
besampling the random vectors from.  On the other hand, Variational Auto-
Encoding GAN(VAE-GAN)  solves  mode  collapse  by  enforcing  
Gaussianness  by  two  learned  parameter,yet causes blurriness in images.  
In this work, we show how our cycle consistent embedding GAN (CCE-GAN) 
both accurately encodes 3D MRIs to the standard normal prior,  and 
maintains the quality of the generated images.  We achieve this without a 
network-based code discriminator via the Wasserstein measure.  We 
quantitatively and qualitatively assessthe embeddings and the generated 3D 
MRIs using healthy T1-weighted MRIs from ADNI.

Background and Task

Our solution builds on 3D-α-GAN. First, instead of using the CD from 3D-α-
GAN or KL loss from VAE-GAN, we use the Wasserstein loss explicitly in the 
Z-space between the random vectors and the embeddings. We  refer  to  this  
as  the  Wasserstein  Auto-Encoder  GAN  (WAE-GAN)  which  provides  
amore flexible mapping compared to the variational approach while more 
strictly enforcing the Gaussianness than the CD. Second,  we further improve 
the Z-space by deriving two additional cycle  consistent  embeddings: 
z_ee=E(G(z_e)) and z_re=E(G(z_r)).  Thus,  our final model, Cycle Consistent 
Embedding GAN (CCE-GAN), solves the following:

The goal of GAN is to learn a generator G mapping a random vector z_r∈Z 
(often a mul-tivariate standard normal) to an image X_r∈Xand a 
discriminator D which differentiates a generated image Xr from the real 
image.  Due to the poor coverage of the Z-space, randomly generated 
images often suffer from mode collapse.  VAE-GAN (Larsen et al., 2016) 
addresses this issue by learning an encoder E mapping from X to Z to derive 
the embed-ding size.  This results in blurry images, so a recently developed 
3D-α-WGAN (Kwon et al.,2019) leverages the CD-based encoder loss from α-
GAN (Rosca et al., 2017).  Although the mode collapse  issue  is  alleviated  in  
the X-space  without  blurriness,  we  identified  that E cannot accurately 

construct the Z-space from 3D brains (e.g., z_e= standard normal prior). We  
leverage  these  findings  to  achieve  improved  embeddings  of  3D  brains,  
which  also results in better image quality without mode collapse issue.  

Methods

Results
Evaluation: We compute the Maximum Mean Discrepancy (MMD) 
measure (linear and RBF  kernels)  between  the  real  images  and  
the  generated  images  for  the X-space,  and between the random 
vectors z_rand their corresponding embeddings z_e for the Z-space.  
We take the average of 100 MMDs.  The Structural Similarity (SSIM) 
measures the distribution diversity where the real data SSIM is 
0.839.  For each model, we generate 1000 image pairs and 
compute the average SSIM which aims to be similar to the real 
data SSIM.

X-space: Table 1 shows the 
advantage of CCE-GAN, and 
Fig. 2d shows the PCA 

Z-space: We first check the encoder outputs of the real images to 
evaluatethe  embeddings  compared  to  the  random standard 
normal Z-space (1000-D). Fig. 2aand b show the PCA embeddings 
of 150 random examples.  Fig. 2a shows that 3D-α-WGANproduces 
sparse embeddings, while Fig. 2b shows that VAE-GAN and CCE-
GAN produceembeddings highly similar to the random Z-space also 
shown quantitatively in Table 1.

embeddings of the images being closer to the real dataset than 
Fig. 2c.  In Fig. 3, wesee VAE-GAN, despite reasonable MMD 
measures in Z and X, results in blurry images.
Conclusion: We enable accurate mapping of 3D brains in X-
space to their embeddingsin  the Z-space  in  a  cycle  consistent  
manner  using  CCE-GAN.  We  show  that  if  a  better 
embedding is achieved, it also leads to better image generation 
for 3D MRI generation taskas well.  For future work, we will 
consider other 3D brain datasets.


