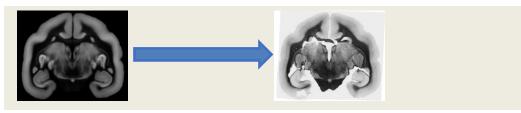

Semi-supervised Image-to-Image Translation for Robust Image Registration

H. Skibbe¹, A. Watakabe², F. Rachmadi¹, C. E. Gutierrez³, K. Nakae⁴, T. Yamamori²


Riken, Center for Brain Science: Brain Image Analysis Unit, Japan
Riken, Center for Brain Science, Molecular Analysis of Higher Brain Function, Japan
Okinawa Institute of Science and Technology, Neural Computation Unit, Japan
Kyoto University, Ishii-Iab, Japan

Training set

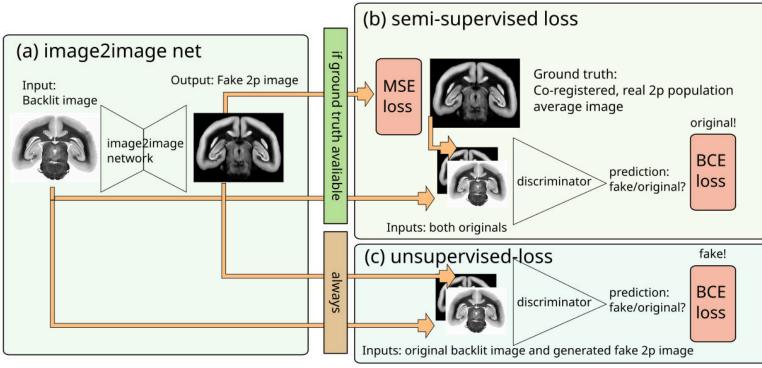
Select the image pairs where registration works for training

Backlit-to-template training set

Nissl-to-template training set

Semi-supervised Image-to-Image Translation for Robust Image Registration

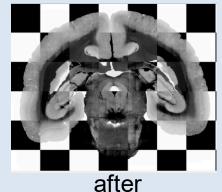
H. Skibbe¹, A. Watakabe², F. Rachmadi¹, C. E. Gutierrez³, K. Nakae⁴, T. Yamamori²


Riken, Center for Brain Science: Brain Image Analysis Unit, Japan
Riken, Center for Brain Science, Molecular Analysis of Higher Brain Function, Japan
Okinawa Institute of Science and Technology, Neural Computation Unit, Japan
Kyoto University, Ishli-Iab, Japan

For both classes Backlit and Nissl, we created two datasets:

- 1. Paired training set: a training set for supervised training. Pairs of correctly matched slices from 10 brains (about 5000)
- 2. Unpaired training set: a training set for unsupervised training: Niss/Backlit images from 25 brains.

We use an average 2P-template as target image instead of the individual 2P-images to iron out the influence of individual features like tissue damage, acquisition artifacts or image post-processing artifacts.


Training

Example

before

- a) For the image-to-image translation, we used a U-Net (Ronneberger et al. 2015)
- b) For paired images, we used both a "local", pixel-wise loss (MSE) and a "global" loss (A discriminator network).
- c) For unpaired Nissl/Backlit images, we only use the discriminator

Our architecture and training is inspired by DCGAN*. Our code can be found here: https://bitbucket.org/skibbe/midl2021_henrik

*Radford et al. Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks, 2015