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Training set
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Select the image pairs where registration works for training

Backlit-to-template training set

Nissl-to-template training set

We use an average 2P-template as target image instead of the individual 2P-images to iron out the influence 

of individual features like tissue damage, acquisition artifacts or image post-processing artifacts.

1. Paired training set: a training set for supervised 
training. Pairs of correctly matched slices from 10 

brains (about 5000)

2. Unpaired training set: a training set for 

unsupervised training: Niss/Backlit images from 

25 brains.

For both classes Backlit and Nissl, we created two datasets:
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Training

a) For the image-to-image translation, we used a U-Net (Ronneberger et al. 2015)

b) For paired images, we used both a "local", pixel-wise loss (MSE) and a "global" loss (A discriminator 

network).

c) For unpaired Nissl/Backlit images, we only use the discriminator

Our architecture and training is inspired by DCGAN*. Our code can be found here: https://bitbucket.org/skibbe/midl2021_henrik

*Radford et al. Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks,2015
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