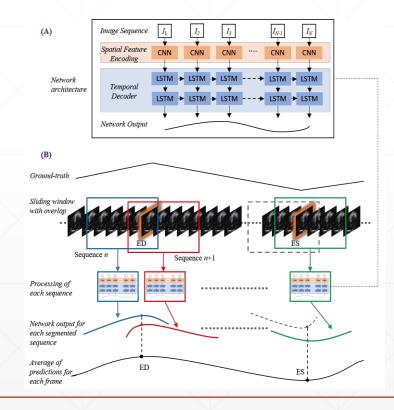

Echocardiographic Phase Detection Using Neural Networks

Beth Lane, PhD Candidate School of Computing and Engineering, University of West London

Accurate identification of end-diastolic (ED) and end-systolic (ES) frames in echocardiographic cine loops is essential when measuring cardiac function. Manual selection by human experts is challenging and error prone.

We present a deep neural network trained and tested on multi-centre patient data for accurate phase detection in apical four-chamber videos of arbitrary length, spanning several heartbeats, with performance indistinguishable from that of human experts.



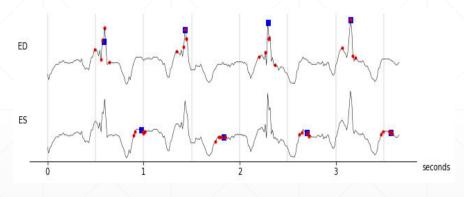
Three multi-centre apical 4-chamber (A4C) **datasets** were used in this study:

Dataset Name	PACS-dataset	MultiBeat-dataset	EchoNet-dataset			
	Private	Private	Publicly available			
Source	NHS Trust PACS Archives - Imperial College Healthcare	St Mary's Hospital Acquired for this study	Stanford University Hospital echonet.github.io/dyn amic			
Number of videos/patients	1,000	40	10,030			
Length of videos	1-3 heartbeats	\geq 10 heartbeats	1 heartbeat			
Ground-truth	2 annotations by 2 experts	6 annotations by 5 experts (twice by one expert)	1 annotation			
Original size (pixels)	(300-768)×(400- 1024)	422×636	112×112			
Frame rate (fps)	23-102	52-80	50			
Format	DICOM	DICOM	AVI			
Use	Training/Testing	Testing	Testing			

The **model architecture** comprises a CNN unit (ResNet50 with ImageNet weights) for encoding spatial information, a RNN (2x LSTM) unit for decoding temporal information, from which return sequence is set to true then flattened and regressed through a Dense layer in chunks of 30 frames. A fixed-stride of 1 frames sliding window allows multiple predictions to be averaged for each input frame. A peak finding algorithm identifies discrete predictions for ED and ES relative to a predetermined threshold.

Average absolute frame difference (aaFD) notation was used as the evaluation metric:

$aaFD = \frac{1}{N} \sum_{t=1}^{N} |y^t - \hat{y^t}|,$


PACS-dataset results:

Model/Operator		ED		ES	Detection Time (s)	
	aaFD	$\mu \pm \sigma$	aaFD	$\mu \pm \sigma$		
ResNet50 + 2x-LSTM	0.66	-0.09±1.10	0.81	0.11±1.29	0.776±0.33	
Operator-2 (inter-observer)	1.55	-1.35±1.31	1.44	-0.90±1.80	26±11	

Multibeat-dataset results:

Model/Operator	ED		ES	
	aaFD	$\mu \pm \sigma$	aaFD	μ±σ
Operator-1a vs Operator-1b	1.96	-0.22 ± 2.76	1.90	0.25 ± 3.75
Operator-1a vs Operator-2	2.65	-1.22 ± 4.26	3.67	-2.25 ± 4.68
Operator-1a vs Operator-3	5.82	-5.51 ± 3.77	4.80	-4.46 ± 3.77
Operator-1a vs Operator-4	1.72	-0.87 ± 2.29	2.01	-0.97 ± 3.48
Operator-1a vs Operator-5	3.27	-2.96 ± 2.57	4.11	-3.64 ± 3.67
Operator-1a vs model	2.62	-1.34 ± 3.27	1.86	-0.31 ± 3.37

The figure below represents an extracted ECG trace from the Multibeat-dataset with expert annotations as red dots and model predictions as blue squares

EchoNet-dataset results:

Model/Operator	ED		ES		
	aaFD	$\mu \pm \sigma$	aaFD	$\mu \pm \sigma$	
Model	2.30	0.16±3.56	3.49	2.64±3.59	

