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Accurate identification of end-diastolic (ED) and end-systolic (ES)
frames in echocardiographic cine loops is essential when measuring
cardiac function. Manual selection by human experts is challenging and
error prone.

We present a deep neural network trained and tested on multi-centre
patient data for accurate phase detection in apical four-chamber videos
of arbitrary length, spanning several heartbeats, with performance
indistinguishable from that of human experts.
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Three multi-centre apical 4-chamber (A4C) datasets were used in this

study:

Dataset Name | PACS-dataset MultiBeat-dataset | EchoNet-dataset
Private Private Publicly available

Source NHS Trust St Mary’s Hospital Stanford University

Hospital

PACS Archives - | Acquired for this e
Imperial College | study echonet.github.io/dyn
Healthcare amic

Number of 1,000 40 10,030

videos/patients

Length of 1-3 heartbeats > 10 heartbeats 1 heartbeat

videos

Ground-truth

2 annotations by 2

6 annotations by 5

1 annotation

experts experts (twice by
one expert)

Original size (300-768)x(400- | 422x636 112x112
(pixels) 1024)
Frame rate 23-102 52-80 50
(fps)
Format DICOM DICOM AVI
Use Training/Testing | Testing Testing

The model architecture comprises a CNN unit (ResNet50
with ImageNet weights) for encoding spatial information, a
RNN (2x LSTM) unit for decoding temporal information,
from which return sequence is set to true then flattened and
regressed through a Dense layer in chunks of 30 frames. A
fixed-stride of 1 frames sliding window allows multiple
predictions to be averaged for each input frame. A peak
finding algorithm identifies discrete predictions for ED and
ES relative to a predetermined threshold.
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Average absolute frame difference (aaFD) notation was used as the evaluation metric:

PACS-dataset results:
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Model/Operator ED ES Detection Time (s)
The figure below represents an extracted
aabD fu+g aabD fudc ECG trace from the Multibeat-dataset with
ResNet50 + 2x-LLSTM 0.66 |-0.09+1.10 | 0.81 |0.11£1.29 | 0.776+0.33 expert annotations as red dots and model
Operator-2 (inter-observer) 1.55 | -1.35+1.31 | 1.44 | -0.90+1.80 |26+11 predictions as blue squares
Multibeat-dataset results: ! X 1 ﬁ
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Operator-la vs Operator-1b | 1.96 |-022+2.76 [1.90 |0.25+3.75 / W ¥ TV YTy \
i . ; . seconds
Operator-1a vs Operator-2 |2.65 |-1.22+4.26 |3.67 |-2.25+4.68 ” : ; :
Operator-la vs Operator-3 |5.82 |-551+3.77 |4.80 |-4.46+3.77 | EchoNet-dataset results:
Operator-1a vs Operator-4 | 1.72 |-0.87+2.29 [2.01 |-0.97+3.48 Model/Operator | ED ES
Operator-l1a vs Operator-5 |3.27 |-2.96+2.57 [4.11 |-3.64+3.67 aaFD |u+o aaFD |pu+o
Operator-la vs model 2.62 |-1.34+327 |1.86 |-0.31+3.37 Model 230 [0.16+£3.56 [3.49 |2.64+3.59
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