Predicting molecular subtypes of breast cancer using multimodal deep learning and incorporation of the attention mechanism

Introduction

Breast cancer can be divided into four molecular subtypes, which is usually based upon the expression levels of ER, PR, HER2 and Ki-67.

✓ The molecular subtypes of breast cancer is an important factor for the prognosis of breast cancer patients, and can guide treatment selection.

Results

The confusion matrix (for 4-class molecular subtypes) and ROC curve (for Luminal vs Non-Luminal) for predicting molecular subtypes.

✓ The MCC was 0.794 for predicting 4-class molecular subtypes of breast cancer, and the AUC was 0.855 for distinguishing between Luminal and Non-Luminal using MDLA model.

• The overall pipeline diagram of multimodal deep learning with attention mechanism (MDLA) model. The model was developed based on residual neural network.

✓ Two views of mammography (MG, medio-lateral oblique -MLO- and cranio-caudal -CC-) and an ultrasound (US) image of each case (lesion location) were used as input.

Visualization

• The visualization of MDLA model in predicting 4-class molecular subtypes of breast cancer, including MG and corresponding US.

✓ The MDLA model focuses on the information of the lesion area of MG and US images, including masses, calcifications, lesion morphology and so on.

First Author: Tianyu Zhang

Corresponding Author: Ritse M. Mann <u>r.mann@nki.nl</u> ritse.mann@radboudumc.nl

Co-authors: Tianyu Zhang Luyi Han Yuan Gao Xin Wang Regina Beets-Tan Ritse M. Mann

MU & RUMC & NKI

US

Medical Imaging with Deep Learning 2021, 7 - 9 July 2021

Model