

Introduction

Goal: Good performance and explainable medical CV model.

Explainable CV model: (1) saliency maps (2) sequential Decision processes

Related Work

Not true understanding of (i) what is leant and (ii) how decisions are made.

[Lucieri et al. 2020]: prediction + most similar concept.

!!! Without knowing the decision basis.

[Xiao et al. 2015]: DL model with visual attention.

!!! Without knowing the decision process.

[Balestriero et al. 2017], [Yang et al. 2018], [Wan et al. 2020]: deep learning model + decision trees. NBDT: backbone+hierarchies→accuracy↑+interpretability↑

Balance between accuracy and interpretability.

Me-NDT: Neural-backed Decision Tree for visual Explainability of deep Medical models Guanghui Fu¹, Ruiqian Wang¹, Jianqiang Li¹, Maria Vakalopoulou^{2,3}, Vicky Kalogeiton⁴

Model Structure

Me-NDT=backbone + two branches: classification branch & medical template

Step 1: Pre-training the CNN model; **Step 2**: Load the weights of the adaptive max pooling layer of the pre-trained model;

Step 3: Define the medical template according to the anatomical positional relationships & dependencies among diseases;

Step 4: Combine two branches together and retrain (each node is trained as a FC layer);

Step 5: Visualize and generate reports.

Medical Template

Dataset: Provide by RSNA brain CT hemorrhage challenge [7] which contains six types of intracerebral hemorrhage.

Parent-level	Child-level	Abbreviation	
Brain Tissue	Subarachnoid	SAH	
	Intraparenchymal Hemorrhage	IPH	
	Intraventricular Hemorrhage	IVH	
Near the Skull	Subdural	SDH	
	Extradural	EDH	

Loss Functions

The overall loss=classification loss+ path loss+ node loss $= w_c L_{cls} + w_p L_{path} + w_n L_{node}$

Node loss supervises all nodes n, with a multi-label cross-entropy:

$$L_{node} = -\sum_{i=1}^{n} ((y_i^n \cdot \log(\hat{y}_i^n) + (1 - y_i^n) \cdot \log(1 - y_i^n)))$$

Path loss supervises the tree path with multi-label cross-entropy:

$$L_{path} = -\sum_{i=1}^{c} \left(\left(y_i^n \cdot \log\left(\hat{y}_i^{n^{pa}} \cdot \hat{y}_i^{n^{ch}}\right) + \left(1 - y_i^n\right) \cdot \log(1 - y_i^n) \right) \right)$$

[Note] The final prediction is made **solely** by L_{path} and L_{node} .

- Lpath
- Lnode

 $-\hat{y}_i^n))$

 $-\hat{y}_i^{n^{pa}}\cdot\hat{y}_i^{n^{ch}}))$

Experiments

- Backbone: VGG16 network.
- Do experiments on 5-fold cross-val
- Hyperparameters: w_c , w_p , $w_n = 1,1$

	Model	L _{cls}	#Parameters	F1-score	Precision	Recall	
	VGG	-	134,281,029	0.79686	0.80947	0.81915	
I	Me-NDT	-	16,557,905	0.80349	0.81513	0.82556	
I	Me-NDT	\checkmark	16,560,470	0.80535	0.81679	0.82755	
able 1: Comparison experiment and ablation experiments on a part of RSNA brain CT dataset.							
Better Performance: Higher F1-score, Precision and Recall.							

- Lighter Model: Less parameters

Decision Process

Conclusions

- 2. Explainable: able to classify diseases and visualize both decision basis & paths.
- 3. Good Performance: lighter, faster & more accurate.

References

[1] Lucieri, Adriano, et al. "On interpretability of deep learning based skin lesion classifiers using concept activation vectors." 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. [2] Rajendran, Periyasamy, and Muthusamy Madheswaran. "Hybrid medical image classification using association rule mining with decision tree algorithm." arXiv preprint arXiv:1001.3503 (2010). [3] Wan, Alvin, et al. "NBDT: neural-backed decision trees." arXiv preprint arXiv:2004.00221 (2020). [4] Xiao, Tianjun, et al. "The application of two-level attention models in deep convolutional neural network for finegrained image classification." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. [5] Yang, Yongxin, Irene Garcia Morillo, and Timothy M. Hospedales. "Deep neural decision trees." arXiv preprint arXiv:1806.06988 (2018).

[6] Balestriero, Randall. "Neural decision trees." arXiv preprint arXiv:1702.07360 (2017). [7] Flanders, Adam E., et al. "Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge." Radiology: Artificial Intelligence 2.3 (2020): e190211. [8] Fu, Guanghui, et al. "Attention-based full slice brain CT image diagnosis with explanations." Neurocomputing 452 (2021): 263-274.

alidation.	
000,10	

In the future, our research should focus on Template-free and Sequence-level [8].