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Medical Image Registration

Traditional image registration methods

Formulate registration as a variational problem.

Solve an optimization iteratively for each pair of images.

Slow in practice and computationally expensive.

Deep-learning-based image registration methods
Optimize a global function during training.
Learn a common representation of image registration.
Improved registration accuracy.

Fast in speed.

JOHNS HOPKINS  JOHNS HOPKINS

HHHHHHHHHHHH
of ENGINEERING

EEEEEEE



Drawbacks of Convolutional Neural Networks

Limitations in modeling explicit long-range spatial relations
The size of receptive field is limited by the convolution-kernel size.

The effective receptive field is much smaller than the theoretical receptive field for
very deep ConvNets [1].

Having the capability of considering long-range spatial relations is important for image
registration.

Many works have been proposed to overcoming this problem
Dilated convolution [2].
U-Net/V-Net (down- and up-sampling layers) [3,4].
Self-attention mechanism [5].

Recently, Vision Transformer (ViT) [6] has shown the potential of self-
attention mechanism.
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ViT-V-Net

» We propose to bridge ViT and V-Net for volumetric image registration.

» We compare ViT-V-Net with VoxelMorph and conventional registration
methods (SyN [8] and NiftReg [9]) on the task of subject-to-subject brain
MRI registration.
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Parameter Settings

Loss function LMSE (f; m, ¢) + A['diffusion(gb):

image similarity: Lysg(f,m, ¢) = 5 Ypealf @) —m o $(@)I?

Deformation regularization: Lg;rysion(¢) = XpealIVu(p)|I?

Parameter settings:

P
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VoxelMoprh-1 VoxelMoprh-2 ViT-V-Net
Optimizer ADAM ADAM ADAM
Learning rate le™* le™* ta™
Learning rate decay Polynomial (0.9) Polynomial (0.9) Polynomial (0.9)
Dropout 0.0 0.0 0.1
Epochs 500 500 500
Batch size 2 2 2
Loss function MSE MSE MSE
Regularizer Diffusion Diffusion Diffusion
Regularization parameter () 0.02 0.02 0.02
Data augmentation Random flipping Random flipping Random flipping
ViT patch size (P) - - 8
ViT latent vector size (D) - - 252
GPU memory used during training 17.320 GiB 19.579 GiB 18.511 GiB
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Experiments & Results

Dataset:
260 T1-weighted brain MRI scans (7:1:2).

Preprocessed and segmented using FreeSurfer [7].

Quantitative Results:

Dice 0.713+0.134 0.688+0.140 0.707+0.137
%of |Jo| <0 0.225+0.165 0.118+0.084 0.375+0.098
Time (sec) 113 15.257 0.002

0.711+0.135
0.414+0.084

0.002

0.726+0.130
0.381+0.102

0.002
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Experiments & Results

» Training curves:

MSE Loss Validation Dice Score
0.0022 0.75
——ViT-V-Net
0.002 ~———VoxelMorph-1 0.73
——VoxelMorph-2
o 071
c
0.0018 @
3)
= 0.69
- =
0.0016
= S
0.67
D)
0.0014 =
A 65
0.0012 - 0.63 ——ViT-V-Net
[ ’ ———VoxelMorph-1
A = ——VoxelMorph-2
0.001 0.61
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch

=
e ) &
MIDL JOHNS HOPKINS JOHNS HOPKINS

Liibeck 2021 WHITING SCHOOL
of ENGINEERING

MEDICINE



Experiments & Results

Qualitative results:

Deformed Target Moving

Deformation Field
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Conclusion

This preliminary work has shown the Transformer’s potential on the task of
medical image registration.

A simple bridging of ViT and V-Net produced better results than the simple
U-Net-based architecture used in VoxelMorph.

The method was evaluated on a large brain MRI dataset and achieved
superior performance which demonstrated its effectiveness.
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