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Medical Image Registration

 Traditional image registration methods

 Formulate registration as a variational problem.

 Solve an optimization iteratively for each pair of images.

 Slow in practice and computationally expensive. 

 Deep-learning-based image registration methods

 Optimize a global function during training.

 Learn a common representation of image registration.

 Improved registration accuracy.

 Fast in speed.



Drawbacks of Convolutional Neural Networks

 Limitations in modeling explicit long-range spatial relations

 The size of receptive field is limited by the convolution-kernel size.

 The effective receptive field is much smaller than the theoretical receptive field for 
very deep ConvNets [1].

 Having the capability of considering long-range spatial relations is important for image 
registration.

 Many works have been proposed to overcoming this problem

 Dilated convolution [2].

 U-Net/V-Net (down- and up-sampling layers) [3,4].

 Self-attention mechanism [5].

 Recently, Vision Transformer (ViT) [6] has shown the potential of self-
attention mechanism.



ViT-V-Net

 We propose to bridge ViT and V-Net for volumetric image registration.

 We compare ViT-V-Net with VoxelMorph and conventional registration 

methods (SyN [8] and NiftReg [9]) on the task of subject-to-subject brain 

MRI registration.



Parameter Settings

 Loss function ℒ𝑀𝑆𝐸 𝑓,𝑚, 𝜙 + 𝜆ℒ𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝜙 :

 Image similarity: ℒ𝑀𝑆𝐸 𝑓,𝑚, 𝜙 = 1Ωσ𝑝∈Ω 𝑓 𝑝 −𝑚 ∘ 𝜙 𝑝 2
 Deformation regularization: ℒ𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝜙 = σ𝑝∈Ω |∇𝑢 𝑝 | 2

 Parameter settings:



Experiments & Results

 Dataset:

 260 T1–weighted brain MRI scans (7:1:2).

 Preprocessed and segmented using FreeSurfer [7].

 Quantitative Results:

NiftyReg SyN VoxelMorph-1 VoxelMorph-2 ViT-V-Net 

Dice 0.713±0.134 0.688±0.140 0.707±0.137 0.711±0.135 0.726±0.130

% of |𝐽𝜙| ≤ 0 0.225±0.165 0.118±0.084 0.375±0.098 0.414±0.084 0.381±0.102

Time (sec) 113 15.257 0.002 0.002 0.002 



Experiments & Results

 Training curves:



Experiments & Results

 Qualitative results:



Conclusion

 This preliminary work has shown the Transformer’s potential on the task of 
medical image registration.

 A simple bridging of ViT and V-Net produced better results than the simple 

U-Net-based architecture used in VoxelMorph.

 The method was evaluated on a large brain MRI dataset and achieved 

superior performance which demonstrated its effectiveness.
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