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Goals:

- Applying and evaluating a method for multimodal, 

unsupervised and generative learning on challenging 

medical data from the MIMIC-CXR database

- Learning a joint embedding of multiple data types

- Handling of missing data

Merging embeddings of multiple data types into one joint

embedding is still an open problem. We use the MoPoE method
from Sutter et al. [1], which is a combination of the PoE from Wu

& Goodman [2] and the MoE from Shi et al. [3].
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We evaluate the quality of the latent representation for each
subset of modalities by verifying if a linear classifier can separate
between encoded samples with or without any pathology. We

report the mean average precision over the test set for each
subset (F: frontal image, L: lateral image, T: text report).

We provide a useful baseline for multimodal, unsupervised and

generative methods on challenging medical data for real world
applications.

We highlight challenges that can be addressed in future work:

- Features that are needed to classify for pathologies are lost
due to the blurriness of the generated samples.

- The separability of the latent representation could be

leveraged in a better way by using more advanced methods

than linear classification.

- We use basic encoder and decoder architectures. The usage
of more ad hoc architectures could further improve the

results.

5. Method Details

- We create a binary label “Finding”, which indicates if a
sample presents any pathology in the MIMIC-CXR database.
This gives 14529 positive and 47218 negative samples.

- We use ResNet type architectures for all encoders and
decoders.

- We use a word encoding for the text:
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Examples of generated 
samples. 
On the left, the L and T 

modality are given to the 
model as input.

On the right, all 
modalities (F, L and T) 
are given as input. The 

samples above the red 
line are the input 

samples and those below 
are generated.
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