

TG-DGM: Clustering Brain Activity using a Temporal Graph Deep Generative Model

Alex Campbell*, Simeon Spasov*, Giovanna Maria Dimitri, Alessandro Di Stefano, Franco Scarselli, Pietro Lio

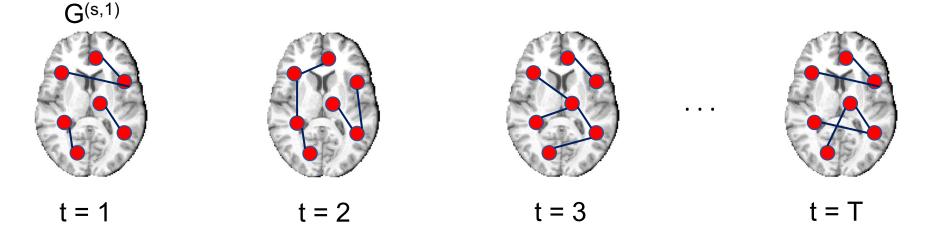
First authors:

PhD students at the Artificial Intelligence Group, supervised by Prof. Pietro Lio, Department of Computer Science and Technology, University of Cambridge

Work funded by HPC-Europa3 Transnational Access

* joint first authorship

Introduction



- The brain can be seen as a **temporally evolving graph** where nodes are spatially distributed RoIs
- Edges can be determined as Rol correlations of BOLD signals from fMRI data
- Temporal dynamics of Rol clusters are useful for understanding brain function

We propose an **unsupervised** deep generative model which can:

- 1. Learn subject embeddings as well as evolving node and community embeddings
- 2. Can be used for downstream tasks (e.g. subject stratification or other predictive tasks)
- 3. Parameterized by neural networks and fast to train

Notation

- Data is a set of dynamic graphs for S subjects $\mathcal{D} = \{G^{(s,t)} \text{ for } s = 1, ..., S; t = 1, ..., T\}$
- The vertex set is fixed and represents the Rols $V = \{1, ..., N\}$
- Each $G^{(s,t)}$ has an associated edge set $E^{(s,t)} = \{(w, c) : w, c \in N\}$

The Generative Model

Initialize a subject embedding matrix alpha $\mathbf{\alpha} \in \mathcal{R}^{\mathsf{S} \times \mathsf{D}}$

For each subject *s* in *1,..., S*:

Initialize community $\beta^{(s,0)}$ and node $\phi^{(s,0)}$ embeddings as NNs of α

```
For time t in 1...T:
```

```
Evolve \beta^{(s,t)} = GRU (\beta^{(s,0:t-1)}) and \phi^{(s,t)} = GRU (\phi^{(s,0:t-1)})
```

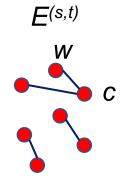
```
For each edge (w, c) in G^{(s,t):}
```

Sample prior community assignment *z* for source node w

Sample neighbour c

Node and community
 distributions are neural network
 transformations of φ and β

[1] Model inspired by GRADE: Graph Dynamic Embedding, Simeon Spasov, Alessandro Di Stefano, Pietro Lio, and Jian Tang, arXiv.



Results

- Data taken from UK Biobank. fMRI from S = 560 gender and age matched subjects.
- N = 360 Rol time series of length 490 (using Glasser parcellation [2]).
- We use time window W of varying lengths to calculate correlations. This gives different temporal resolution T.
- We apply logistic regression on the learnt embeddings to predict biological sex.

W	T	lpha	$oldsymbol{eta}$	$\boldsymbol{\alpha} \boldsymbol{\beta}$	_
490	1	0.70 ± 0.03	0.73 ± 0.04	0.75 ± 0.03	
245	2	0.74 ± 0.07	0.72 ± 0.04	0.74 ± 0.06	
98	5	0.78 ± 0.03	0.78 ± 0.04	0.80 ± 0.06	
49	10	0.79 ± 0.04	0.78 ± 0.05	0.80 ± 0.04	
35	14	0.70 ± 0.06	0.79 ± 0.05	0.77 ± 0.04	
14	35	0.80 ± 0.02	0.79 ± 0.05	0.81 ± 0.03	
7	70	0.69 ± 0.06	0.73 ± 0.07	0.70 ± 0.06	

Table 1: AUC ROC results on biological sex classification using TG-DGM embeddings

Key points

- Our **unsupervised** model gives ROC AUC of up to
 0.81
- Temporal dynamics improve performance (up to a point)
- 3. Both subject and community embeddings are predictive of biological sex.