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Motivation

! CNN classifiers need interpretability

" The network’s attention should be on the correct body part

! Network visualization algorithms (e.g., CAM) are

" Post-hoc, implicit, uncontrollable

! Our method: explicitly inject clinical prior knowledge

" Manually specify body parts of interest

" Guide the network to directly learn from these regions

! Challenge

" Cost many labeled images to train organ segmentation or 

landmark detection models

Related Work

! Self-Supervised Anatomical Embedding (SAM)

" A convenient tool to detect arbitrary anatomical 

landmarks in radiological images

" Low-cost, only need one labeled image as template

" Has been employed in one-shot landmark detection and 

lesion matching

Ke Yan et al., Self-supervised learning of pixel-wise anatomical 
embeddings in radiological images, 2020. https://arxiv.org/abs/
2012.02383 .

https://arxiv.org/abs/2012.02383
https://arxiv.org/abs/2012.02383


Problem

! An example of the SAM-based image classification

! Task: classify four phases in a dynamic liver CT [1]

! Non-contrast / Arterial / Venous / Delay

! Data: 1000 training volumes, 491 testing

! Baseline: 3DSE [1] (train CNN with whole 3D image as input)

! Prior knowledge

" The Hounsfield unit (HU) values of certain anatomical landmarks 

correlate with contrast phases

[1] Bo Zhou et al., “CT data curation for liver patients: Phase recognition in dynamic contrast-
enhanced CT”. In MICCAI - Med. Image Learn. with Less Labels Imperfect Data, 2019.  

Method

1. Manually label 32 phase-related landmarks on one random 

patient as guidance

2. Use SAM to detect these landmarks on all unlabeled images

3. Crop a 3 × 3 × 3 patch around each landmark

4. Extract the maximum HU value on each patch, get a 32D 

feature vector for each image

5. Train a linear SVM on the z-scored features for phase 

classification
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