
We construct cell graphs for each ROI, where each cell corresponds to a node and edges are determined by thresholding 
the spatial distance between cell locations. The initial cell feature is one-hot encoded phenotype. We embed each cell graph 
by applying successive layers of GraphSAGE[2] and DiffPool[3], which allows us to consider multi-hop relationship of each 
cell with its neighbors. 

For the pre-training phase, we use a permutation invariant aggregation function to obtain a slide (patient) embedding for 
self identification task with cross-entropy loss. After pre-training, using the learned graph embedding module, we learn to 
sample graphs jointly with the classification task, using Gumbel-Softmax trick[4] to have an end-to-end differentiable 
pipeline. Different learning rates are used for updating the graph embedding and the graph sampling modules.

We split the set of patches for each patient into three equal parts for training/validation/testing by keeping the number of 
different discriminative patches similar for each subset. 
During the pre-training, we experimented with different aggregation functions, and different architectures. For the graph 
sampling module, we tried using the approximation of categorical sampling variable (gumbel-softmax, soft) as well as the 
real one-hot version (gumbel-softmax, hard).
We used the validation set to determine these hyperparameters and design choices. 
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Advances in multiplex biomarker imaging systems have enabled the 
study of complex spatial biology within the tumor microenvironment. 
Yet, access to big datasets of such slides with accompanying clinical 
data is often limited. Moreover, in practice, only some regions of 
interest (RoIs) are available at high resolution.

Here, we focus on datasets with few images and without labels and aim 
to learn representations for slides, which are described by 
cell-graphs[1] of RoIs. We choose a task of patient identification that 
leads our new model to select RoIs with discriminative properties and 
infer patient-specific features that can be used later for any task via 
transfer learning. 
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Figure 1: Proposed method for multi-graph classification with learned graph selection.

DATASET

EXPERIMENTAL SETUP

Table 1: Characteristics of Synthetic Dataset
We create a synthetic dataset of 10 patients, each of which is 
represented by 15 cell graphs. The total number of nodes for each graph 
is fixed to 1000. We assume six different types of cells, two of which 
represent tumour and stroma cells, while the rest resemble lymphocytes.

To characterize 10 patients, we create five discriminative cell graph 
distributions with different combinations of lymphocyte types and 
counts  with different spatial organizations, as described by Table 1.
A sample from each distribution can be seen on Figure 2.
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Figure 2: Samples from the different graph distributions
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RESULTS

For pre-training, the identification (classification) 
test accuracy reaches to 100%.

Table 2 reports both the classification accuracy and 
patch selection performance when we sample 
different number of patches for each patient. 
Figure 3 further depicts the classification 
performance when we sample different number of 
graphs at test time. The reported accuracy values 
are the average of 100 Monte Carlo simulations.
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Figure 3: The average confusion matrices of Monte Carlo simulations with different number of selected patches (K) for each patient

Table 2: The quantitative results for different experimental setups


