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Take Home Message (1)

CNNs are not robust 
against domain shifts.

Relatively small 
differences in image 
statistics can cause 

substantial performance 
degradation.

HYPOTHESIS → FOR GENERALIZATION ACROSS DOMAIN SHIFTS, WE NEED PER-TEST-IMAGE ADAPTABILITY.

Q1. Which parameters to adapt?
Train N, S on SD. Now, fix S and adapt N for each test 

image. N is shallow to allow contrast modulations 
without substantial structural changes.

Q2. How to drive the adaptation?

DENOISING 
AUTOENCODER

Encourage predicted labels to become plausible.



Test-Time Adaptation Iterations

ML settings
for tackling
domain shifts

Take Home Message (2)

Adapting a CNN for each 
test image increases 
robustness to domain 

shifts.

For image segmentation, a 
prior on output labels can 

be used to drive such 
adaptation.
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