STRENGTH IN DIVERSITY: UNDERSTANDING THE IMPACTS OF DIVERSE TRAINING SETS FOR SELF-SUPERVISED PRE-TRAINING FOR HISTOLOGY IMAGES

BACKGROUND **DIGITAL HISTOPATHOLOGY**

- Whole slide images (WSIs) are very large (100k x 100k)
- Data annotation is expensive and time consuming
- Limited labelled data exists despite the fact that large digital archives of WSIs exist [1,2]

TRANSFER LEARNING

- Learns low-level features by pre-training on data often from different domains (e.g. natural images)
- Improves performance in histopathology and other medical imaging datasets [3]
- Self-supervised learning (SSL) is a subcategory

SELF-SUPERVISED LEARNING

- Pre-trained on **alternative** task using unlabeled data from the same domain
- Labels generated algorithmically with no human intervention
- Provides superior initialization to random weights [4]
- ImageNet pre-training often outperforms SSL

HOW IT WORKS:

STAGE 1: SELF-SUPERVISED PRE-TRAINING

Train a CNN to complete one of the self-supervised tasks with unlabeled data

STAGE 2: SUPERVISED TRAINING

Initialize Stage 2 model with weights from Stage 1 and fine-tune model with labelled data

STAGE 3: TESTING CLASSIFICATION ACCURACY Load model from Stage 2 and test in unseen data

MOTIVATION

CROSS-DOMAIN PRE-TRAINING IS POORLY UNDERSTOOD:

- Domain specific data for pre-training may improve performance [3]
- Using embeddings from other non-medical datasets may improve performance [3]

ACKNOWLEDGMENTS

VECTOR INSTITUTE

UNIVERSITY &GUELPH

• Few evaluations in histopathology

COMPOSITION OF SOURCE DATASETS:

- Diversity of examples included?
- Number of examples?
- Similarity to target dataset?

NSERC CRSNG

Kristina L. Kupferschmidt^{1,2}, Eu-Wern Teh^{1,2}, Graham W. Taylor^{1,2}

OBJECTIVE

To explore if using source data from different domains for simple SSL pre-training tasks can provide a superior initialization for digital histopathology images

METHODS **EXPERIMENTAL SETUP**

- Initialize with (i) SSL pre-trained, (ii) random, or (iii) ImageNet

TARGET DATASET

PatchCamelyon (PCam)

- Lymphatic tissue histology images
- Binary classification (1) Benign (2) Metastatic
- 327,680 patches (96 x 96 px)

REFERENCES

nmert-Buck, M., Reif, E., Smilkov, D., ... & Stumpe, M. C. (2019). Similar image search for histopathology: SMILY. NPJ digital medicine, 2(1), 1-9 [2] Madabhushi, A., & Lee, G. (2016). Image analysis and machine learning in digital pathology: Challenges and opportunities. Medical Image Analysis, 33, 170–175. 3] Cheplygina, V., de Bruijne, M., & Pluim, J. P. W. (2019). Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Medical Image Analysis, 54, 280–296. [4] Kolesnikov, Alexander, Xiaohua Zhai, and Lucas Beyer. 2019. "Revisiting Self-Supervised Visual Representation Learning." arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1901.09005 5] Gidaris, Spyros, Praveer Singh, and Nikos Komodakis. 2018. "Unsupervised Representation Learning by Predicting Image Rotations." arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1803.07728 [6] Noroozi, Mehdi, and Paolo Favaro. 2016. "Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles." In Computer Vision – ECCV 2016, 69–84. Springer International Publishing [7] De Vries, T., Drozdzal, M., & Taylor, G. W. (2020) Instance Selection for GANs. https://github.com/uoguelph-mlrg/instance_selection_for_gans

Target task

SSL pre-training • Subsample 4000 images from one source dataset • Apply one SSL task (rotation or jigsaw)

• Fine-tune using subset of target data ($N_c = 100$, $N_c = 1000$)

SOURCE DATASETS

- 1) Patch Camelyon (PCam)
- 2) TinylmageNet
- 3) Amsterdam Library of Textures (ALOT)
- 4) Colorectal Cancer Dataset (CRC)

PREDICT ROTATION	CLASS 1	0°	
CLASS	CLASS 2	90°	
CNN Model		180°	
	CLASS 4	270°	
·			
PROXY TASK: PREDICT	CLASS 1	idx 1	
PROXY TASK: PREDICT PREDICT PREDICT INDEX	CLASS 2	idx 1 idx 2	
PROXY TASK: PREDICT PREDICT ERMUTATION INDEX	CLASS 1 CLASS 2 CLASS N	idx 1 idx 2 idx N	

- average likelihood [6]

Initialization	Likelihood (Div. Rank)	SSL Initialized Jigsaw Accuracy (%) (Rank)		SSL Initialized Rotation Accuracy (%) (Rank)	
		$N_{c} = 100$	$N_{c} = 1,000$	$N_c = 100$	$N_{c} = 1,000$
ImageNet	-	75.5 <u>+</u> 2.1	83.3 ± 0.9	75.5 <u>+</u> 2.1	83.3 ± 0.9
Random	-	74.1 <u>+</u> 1.0	77.9 ± 0.7	74.1 <u>+</u> 1.0	77.9 ± 0.7
SSL PCam	9850.05 (3)	74.2 ± 4.9 (4)	83.8 ± 0.3 (3)	67.8 ± 2.1 (3)	83.3 ± 0.9 (2)
SSL CRC	9848.12 (1)	76.8 ± 3.9 (1)	84.1 ± 0.7 (1)	74.2 ± 3.6 (2)	82.5 ± 0.7 (4)
SSL TinyImgNet	9849.78 (2)	75.2 <u>+</u> 6.3 (3)	83.8 ± 1.7 (2)	75.0 ± 2.2 (1)	82.8 ± 1.0 (3)
SSL ALOT	9850.48 (4)	76.2 ± 6.3 (2)	83.7 ± 1.0 (4)	67.3 ± 5.0 (4)	83.6 ±0.7 (1)

- Diversity and model performance were correlated Selecting more diverse source data may improve target
- performance in low data conditions
- the greatest promise

- of diversity

METHODS **DIVERSITY EVALUATION**

 Source datasets embedded into a pre-trained feature embedding (ResNeXt-10 with Instagram 1B)

• Fit a single Gaussian distribution to each dataset and compute

RESULTS

 Table 1. Classification performance on PCam dataset across different initializations

Relationship of source data diversity and target task performance

CONCLUSION

Using source data from different domains provides comparable improvement to using the same as the target dataset

Diverse histopathology datasets for SSL pre-training may show

FUTURE WORK

Implement additional self-supervised techniques Investigate source dataset combinations as additional sources

Evaluate performance in additional histology target datasets

AFFILIATIONS

[1] School of Engineering, University of Guelph – Guelph, ON [2] The Vector Institute for Artificial Intelligence - Toronto, ON