J4 - Deep Clustering Activation Maps for Emphysema Subtyping
Weiyi Xie, Colin Jacobs, Bram van Ginneken
Show abstract - Show schedule - PDF - Reviews
We propose a deep learning clustering method that exploits dense features from a segmentation network for emphysema subtyping from computed tomography (CT) scans. Using dense features enables high-resolution visualization of image regions corresponding to the cluster assignment via dense clustering activation maps (dCAMs). This approach provides model interpretability. We evaluated clustering results on 500 subjects from the COPDGene study, where radiologists manually annotated emphysema sub-types according to their visual CT assessment. We achieved a 43% unsupervised clustering accuracy, outperforming our baseline at 41% and yielding results comparable to supervised classification at 45%. The proposed method also offers a better cluster formation than the baseline, achieving 0.54 in silhouette coefficient and 0.55 in David-Bouldin scores.
Hide abstract
Friday 9th July
J1-9 (short): Unsupervised and Representation Learning - 13:45 - 14:30 (UTC+2)
Hide schedule