L2 - M-GCN: A Multimodal Graph Convolutional Network to Integrate Functional and Structural Connectomics Data to Predict Multidimensional Phenotypic Characterizations
Niharika Shimona Dsouza, Mary Beth Nebel, Deana Crocetti, Joshua Robinson, Stewart Mostofsky, Archana Venkataraman
Show abstract - Show schedule - Proceedings - PDF - Reviews
We propose a multimodal graph convolutional network (M-GCN) that integrates resting-state fMRI connectivity and diffusion tensor imaging tractography to predict phenotypic measures. Our specialized M-GCN filters act topologically on the functional connectivity matrices, as guided by the subject-wise structural connectomes. The inclusion of structural information also acts as a regularizer and helps extract rich data embeddings that are predictive of clinical outcomes. We validate our framework on 275 healthy individuals from the Human Connectome Project and 57 individuals diagnosed with Autism Spectrum Disorder from an in-house data to predict cognitive measures and behavioral deficits respectively. We demonstrate that the M-GCN outperforms several state-of-the-art baselines in a five-fold cross validated setting and extracts predictive biomarkers from both healthy and autistic populations. Our framework thus provides the representational flexibility to exploit the complementary nature of structure and function and map this information to phenotypic measures in the presence of limited training data.
Hide abstract
Friday 9th July
L1-3 (long): Learning with Noisy Labels and Limited Data - 16:00 - 16:30 (UTC+2)
Hide schedule